Home
Class 12
MATHS
Solve lim(xto0)["sin"(|x|)/x], where e[....

Solve `lim_(xto0)["sin"(|x|)/x]`, where `e[.]` denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left[ \frac{\sin(|x|)}{x} \right] \), where \( [.] \) denotes the greatest integer function, we will analyze the limit from both the right-hand side (RHL) and the left-hand side (LHL). ### Step 1: Analyze the Right-Hand Limit (RHL) We first consider the limit as \( x \) approaches 0 from the right (i.e., \( x \to 0^+ \)): \[ \lim_{x \to 0^+} \frac{\sin(|x|)}{x} = \lim_{x \to 0^+} \frac{\sin(x)}{x} \] Since \( |x| = x \) when \( x \) is positive, we can directly substitute: \[ \lim_{x \to 0^+} \frac{\sin(x)}{x} = 1 \] Now, applying the greatest integer function: \[ \left[ \lim_{x \to 0^+} \frac{\sin(x)}{x} \right] = [1] = 1 \] ### Step 2: Analyze the Left-Hand Limit (LHL) Next, we consider the limit as \( x \) approaches 0 from the left (i.e., \( x \to 0^- \)): \[ \lim_{x \to 0^-} \frac{\sin(|x|)}{x} = \lim_{x \to 0^-} \frac{\sin(-x)}{x} \] Since \( |x| = -x \) when \( x \) is negative, we can rewrite this as: \[ \lim_{x \to 0^-} \frac{-\sin(x)}{x} = -\lim_{x \to 0^-} \frac{\sin(x)}{x} = -1 \] Now, applying the greatest integer function: \[ \left[ \lim_{x \to 0^-} \frac{-\sin(x)}{x} \right] = [-1] = -1 \] ### Step 3: Conclusion Since the right-hand limit (RHL) and the left-hand limit (LHL) are not equal: \[ \lim_{x \to 0^+} \left[ \frac{\sin(|x|)}{x} \right] = 1 \quad \text{and} \quad \lim_{x \to 0^-} \left[ \frac{\sin(|x|)}{x} \right] = -1 \] The overall limit does not exist. ### Final Answer The limit does not exist. ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to