Home
Class 12
MATHS
lim(xto0)[(-2x)/(tanx)], where [.] denot...

`lim_(xto0)[(-2x)/(tanx)]`, where [.] denotes greatest integer function is

A

-1

B

4

C

5

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left[ \frac{-2x}{\tan x} \right] \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the limit We start with the expression: \[ \lim_{x \to 0} \frac{-2x}{\tan x} \] As \( x \) approaches 0, both the numerator and denominator approach 0. This suggests that we can apply L'Hôpital's Rule or use known limits. ### Step 2: Use the known limit We know from calculus that: \[ \lim_{x \to 0} \frac{\tan x}{x} = 1 \] This implies: \[ \lim_{x \to 0} \frac{x}{\tan x} = 1 \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{-2x}{\tan x} = -2 \cdot \lim_{x \to 0} \frac{x}{\tan x} = -2 \cdot 1 = -2 \] ### Step 3: Apply the greatest integer function Now we have: \[ \lim_{x \to 0} \frac{-2x}{\tan x} = -2 \] Next, we apply the greatest integer function: \[ \left[ -2 \right] = -2 \] ### Final Answer Thus, the final answer is: \[ \boxed{-2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.