Home
Class 12
MATHS
lim(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)...

`lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{n \to \infty} \left( \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \frac{3}{n^2 + 3} + \ldots + \frac{n}{n^2 + n} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We can express the limit as: \[ L = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k} \] ### Step 2: Analyze the general term For large \( n \), the term \( n^2 + k \) can be approximated by \( n^2 \) since \( k \) is much smaller than \( n^2 \). Thus, we can rewrite the term: \[ \frac{k}{n^2 + k} \approx \frac{k}{n^2} \] ### Step 3: Substitute the approximation into the sum Now, substituting this approximation into our sum gives: \[ L \approx \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} k \] ### Step 4: Calculate the sum of the first \( n \) natural numbers The sum of the first \( n \) natural numbers is given by: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] Substituting this into our expression gives: \[ L \approx \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n(n + 1)}{2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} \] ### Step 5: Simplify the expression Now we can simplify: \[ L = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2} = \frac{1 + 0}{2} = \frac{1}{2} \] ### Conclusion Thus, the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n rarr oo)2^(1/n)

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

lim_(n->oo)sin(x/2^n)/(x/2^n)