Home
Class 12
MATHS
The value of the lim(x->0)x/a[b/x](a!=0)...

The value of the `lim_(x->0)x/a[b/x](a!=0)(where [*]` denotes the greatest integer function) is

A

a

B

b

C

`b/a`

D

`1-b/a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x}{a \left[ \frac{b}{x} \right]} \) where \( a \neq 0 \) and \( [\cdot] \) denotes the greatest integer function, we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \lim_{x \to 0} \frac{x}{a \left[ \frac{b}{x} \right]} \] We know that the greatest integer function \( \left[ \frac{b}{x} \right] \) can be rewritten as: \[ \left[ \frac{b}{x} \right] = \frac{b}{x} - \left\{ \frac{b}{x} \right\} \] where \( \{ \cdot \} \) denotes the fractional part. Thus, we can express our limit as: \[ \lim_{x \to 0} \frac{x}{a \left( \frac{b}{x} - \left\{ \frac{b}{x} \right\} \right)} \] ### Step 2: Simplify the Expression Substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{x}{a \left( \frac{b}{x} - \left\{ \frac{b}{x} \right\} \right)} = \lim_{x \to 0} \frac{x}{\frac{ab}{x} - a \left\{ \frac{b}{x} \right\}} \] Now, multiplying the numerator and denominator by \( x \) yields: \[ \lim_{x \to 0} \frac{x^2}{ab - a x \left\{ \frac{b}{x} \right\}} \] ### Step 3: Analyze the Limit As \( x \to 0 \), \( \frac{b}{x} \to \infty \), which means \( \left\{ \frac{b}{x} \right\} \) oscillates between 0 and 1. Therefore, \( a x \left\{ \frac{b}{x} \right\} \) will approach 0 since \( x \) approaches 0. Thus, the limit simplifies to: \[ \lim_{x \to 0} \frac{x^2}{ab - 0} = \lim_{x \to 0} \frac{x^2}{ab} \] ### Step 4: Evaluate the Final Limit Since \( ab \) is a constant (as \( a \neq 0 \)), we have: \[ \lim_{x \to 0} \frac{x^2}{ab} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is