Home
Class 12
MATHS
lim(x->0)(1/(x^5)int0^xe^(-t^2)dt-1/(x^4...

`lim(x->0)(1/(x^5)int_0^xe^(-t^2)dt-1/(x^4)+1/(3x^2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \left( \frac{1}{x^5} \int_0^x e^{-t^2} dt - \frac{1}{x^4} + \frac{1}{3x^2} \right), \] we will follow these steps: ### Step 1: Expand \( e^{-t^2} \) using Taylor series The Taylor series expansion for \( e^x \) is: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] Substituting \( -t^2 \) for \( x \), we get: \[ e^{-t^2} = 1 - t^2 + \frac{t^4}{2} - \frac{t^6}{6} + \cdots \] ### Step 2: Integrate \( e^{-t^2} \) Now, we integrate \( e^{-t^2} \) from \( 0 \) to \( x \): \[ \int_0^x e^{-t^2} dt = \int_0^x \left( 1 - t^2 + \frac{t^4}{2} - \frac{t^6}{6} + \cdots \right) dt \] Calculating the integral term by term: \[ = \left[ t - \frac{t^3}{3} + \frac{t^5}{10} - \frac{t^7}{42} + \cdots \right]_0^x \] Evaluating at the limits gives: \[ = x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \cdots \] ### Step 3: Substitute back into the limit expression Now substitute this result back into the limit expression: \[ \frac{1}{x^5} \left( x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \cdots \right) \] This simplifies to: \[ = \frac{1}{x^5} \left( x - \frac{x^3}{3} + \frac{x^5}{10} \right) + \text{higher order terms} \] Breaking it down: \[ = \frac{1}{x^4} - \frac{1}{3x^2} + \frac{1}{10} - \frac{x^2}{42} + \cdots \] ### Step 4: Combine with the other terms in the limit Now we substitute this into the limit: \[ \lim_{x \to 0} \left( \left( \frac{1}{x^4} - \frac{1}{3x^2} + \frac{1}{10} - \frac{x^2}{42} + \cdots \right) - \frac{1}{x^4} + \frac{1}{3x^2} \right) \] The \( \frac{1}{x^4} \) and \( -\frac{1}{x^4} \) cancel out, and the \( -\frac{1}{3x^2} \) and \( +\frac{1}{3x^2} \) also cancel out: \[ = \lim_{x \to 0} \left( \frac{1}{10} - \frac{x^2}{42} + \cdots \right) \] ### Step 5: Evaluate the limit As \( x \to 0 \), all terms involving \( x \) vanish: \[ = \frac{1}{10} \] Thus, the final answer is: \[ \boxed{\frac{1}{10}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

lim_(x->0)1/x[int_y^a e^(sin^2t)dt-int_(x+y)^a e^(sin^2t)dt] is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

lim_(x to 0)(int_(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

Evaluate: lim_(x->0)(x-(int_0^xcost^2dt))/(x^3-6x)