Home
Class 12
MATHS
lim(n->oo)1/nsum(r=1)^(2n)r/(sqrt(n^2+r^...

`lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2))` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} \), we can follow these steps: ### Step 1: Rewrite the Summation as an Integral We start by recognizing that as \( n \) approaches infinity, the sum can be approximated by an integral. We rewrite the sum: \[ \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} \approx \int_{0}^{2} \frac{x}{\sqrt{1 + x^2}} \, dx \] where we have made the substitution \( x = \frac{r}{n} \), which implies \( r = nx \) and \( dr = n \, dx \). ### Step 2: Change the Variable Next, we change the variable in the integral. We factor out \( n^2 \) from the square root in the denominator: \[ \sqrt{n^2 + r^2} = n \sqrt{1 + \left(\frac{r}{n}\right)^2} = n \sqrt{1 + x^2} \] Thus, we can rewrite the expression inside the sum: \[ \frac{r}{\sqrt{n^2 + r^2}} = \frac{nx}{n\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}} \] ### Step 3: Set Up the Integral Now, we can express the limit as an integral: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} \approx \int_{0}^{2} \frac{x}{\sqrt{1 + x^2}} \, dx \] ### Step 4: Evaluate the Integral To evaluate the integral, we can use the substitution \( t = 1 + x^2 \), which gives \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = 2 \), \( t = 5 \) Thus, the integral becomes: \[ \int_{1}^{5} \frac{1}{\sqrt{t}} \cdot \frac{dt}{2} = \frac{1}{2} \int_{1}^{5} t^{-1/2} \, dt \] ### Step 5: Solve the Integral Now we compute the integral: \[ \frac{1}{2} \left[ 2t^{1/2} \right]_{1}^{5} = \left[ t^{1/2} \right]_{1}^{5} = \sqrt{5} - \sqrt{1} = \sqrt{5} - 1 \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} = \sqrt{5} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to