Home
Class 12
MATHS
The value of lim(xto0)(x sin (sinxx)-sin...

The value of `lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6))` equals

A

(a)`1/6`

B

(b)`1/12`

C

(c)`1/18`

D

(d)`1/24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{x \sin(\sin x) - \sin^2 x}{x^6} \), we will follow a systematic approach using Taylor series expansions. ### Step-by-Step Solution: 1. **Expand \( \sin x \) using Taylor series:** The Taylor series expansion of \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \] 2. **Substituting \( \sin x \) into \( \sin(\sin x) \):** Now we substitute \( \sin x \) into itself: \[ \sin(\sin x) = \sin\left(x - \frac{x^3}{6} + O(x^5)\right) \] Using the Taylor series again: \[ \sin(\sin x) = \left(x - \frac{x^3}{6} + O(x^5)\right) - \frac{1}{6}\left(x - \frac{x^3}{6}\right)^3 + O\left(\left(x - \frac{x^3}{6}\right)^5\right) \] 3. **Calculating \( \sin^2 x \):** We also need \( \sin^2 x \): \[ \sin^2 x = \left(x - \frac{x^3}{6} + O(x^5)\right)^2 = x^2 - \frac{x^4}{3} + O(x^6) \] 4. **Combine the expressions:** Now we need to compute \( x \sin(\sin x) - \sin^2 x \): \[ x \sin(\sin x) = x\left(x - \frac{x^3}{6} + O(x^5)\right) = x^2 - \frac{x^4}{6} + O(x^6) \] Therefore, \[ x \sin(\sin x) - \sin^2 x = \left(x^2 - \frac{x^4}{6} + O(x^6)\right) - \left(x^2 - \frac{x^4}{3} + O(x^6)\right) \] Simplifying this gives: \[ x \sin(\sin x) - \sin^2 x = -\frac{x^4}{6} + \frac{x^4}{3} + O(x^6) = \frac{x^4}{6} + O(x^6) \] 5. **Substituting back into the limit:** Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{\frac{x^4}{6} + O(x^6)}{x^6} = \lim_{x \to 0} \left(\frac{1}{6} \cdot \frac{x^4}{x^6} + \frac{O(x^6)}{x^6}\right) = \lim_{x \to 0} \left(\frac{1}{6} \cdot \frac{1}{x^2} + O(1)\right) \] As \( x \to 0 \), \( \frac{1}{x^2} \to \infty \) and \( O(1) \) remains bounded. 6. **Final evaluation:** The limit diverges to infinity, indicating that the original expression approaches infinity as \( x \) approaches 0. ### Conclusion: Thus, the value of the limit is: \[ \lim_{x \to 0} \frac{x \sin(\sin x) - \sin^2 x}{x^6} = \infty \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

The value of lim_(xto0)(p^(x)-q^(x))/(r^(x)-s^(x)) is

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

The value of lim_(xto0)(1/(x^(2))-cotx) is