Home
Class 12
MATHS
If lim(xto0)(log(e)cot((pi)/4-K(1)x))/(t...

If `lim_(xto0)(log_(e)cot((pi)/4-K_(1)x))/(tanK_(2)x)=1`, then

A

`K_(1)=K_(2)`

B

`2K_(1)=K_(2)`

C

`K_(1)=2K_(2)`

D

`K_(1)=4K_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by: \[ \lim_{x \to 0} \frac{\log(\cot(\frac{\pi}{4} - k_1 x))}{\tan(k_2 x)} = 1 \] we will follow these steps: ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator and denominator approach 0, leading to the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: 1. **Differentiate the numerator**: \[ \frac{d}{dx} \left( \log(\cot(\frac{\pi}{4} - k_1 x)) \right) = \frac{-k_1 \csc^2(\frac{\pi}{4} - k_1 x)}{\cot(\frac{\pi}{4} - k_1 x)} \] 2. **Differentiate the denominator**: \[ \frac{d}{dx} (\tan(k_2 x)) = k_2 \sec^2(k_2 x) \] ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives obtained: \[ \lim_{x \to 0} \frac{-k_1 \csc^2(\frac{\pi}{4} - k_1 x)}{k_2 \sec^2(k_2 x)} \] ### Step 4: Evaluate the limit as \( x \to 0 \) As \( x \to 0 \): - \( \cot(\frac{\pi}{4}) = 1 \) implies \( \csc^2(\frac{\pi}{4}) = 2 \). - \( \sec^2(0) = 1 \). Thus, the limit simplifies to: \[ \lim_{x \to 0} \frac{-k_1 \cdot 2}{k_2 \cdot 1} = \frac{-2k_1}{k_2} \] ### Step 5: Set the limit equal to 1 According to the problem statement, we set this equal to 1: \[ \frac{-2k_1}{k_2} = 1 \] ### Step 6: Solve for \( k_2 \) Rearranging gives: \[ -2k_1 = k_2 \] Thus, we can express \( k_2 \) in terms of \( k_1 \): \[ k_2 = -2k_1 \] ### Final Result The relationship between \( k_1 \) and \( k_2 \) is: \[ k_2 = -2k_1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If lim _(xto0) (ln cot ((pi)/(4) -beta x))/( tan ax)=1, then (alpha)/(beta)=.....

Find lim_(xto0)(cot^(-1)(1/x))/x

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.