Home
Class 12
MATHS
For positive integers k=1,2,3,....n,, le...

For positive integers k=1,2,3,....n,, let `S_k` denotes the area of `triangleAOB_k` such that `angleAOB_k=(kpi)/(2n)`, OA=1 and `OB_k=k` The value of the `lim_(n->oo)1/n^2sum_(k-1)^nS_k` is

A

`2/(pi^(2))`

B

`4/(pi^(2))`

C

`8/(pi^(2))`

D

`1/(2pi)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} S_k \] where \( S_k \) is the area of triangle \( AOB_k \) with \( OA = 1 \), \( OB_k = k \), and the angle \( \angle AOB_k = \frac{k \pi}{2n} \). ### Step 1: Calculate the Area \( S_k \) The area \( S_k \) of triangle \( AOB_k \) can be calculated using the formula for the area of a triangle given two sides and the included angle: \[ S_k = \frac{1}{2} \cdot OA \cdot OB_k \cdot \sin(\angle AOB_k) \] Substituting the values of \( OA \) and \( OB_k \): \[ S_k = \frac{1}{2} \cdot 1 \cdot k \cdot \sin\left(\frac{k \pi}{2n}\right) = \frac{k}{2} \sin\left(\frac{k \pi}{2n}\right) \] ### Step 2: Substitute \( S_k \) into the Summation Now, we substitute \( S_k \) into the summation: \[ \sum_{k=1}^{n} S_k = \sum_{k=1}^{n} \frac{k}{2} \sin\left(\frac{k \pi}{2n}\right) \] This can be rewritten as: \[ \sum_{k=1}^{n} S_k = \frac{1}{2} \sum_{k=1}^{n} k \sin\left(\frac{k \pi}{2n}\right) \] ### Step 3: Analyze the Limit Now we need to analyze the limit: \[ \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{1}{2} \sum_{k=1}^{n} k \sin\left(\frac{k \pi}{2n}\right) \] We can express the sum as a Riemann sum. As \( n \to \infty \), the term \( \frac{k}{n} \) approaches \( x \) where \( x \) ranges from \( 0 \) to \( 1 \). Thus, we can rewrite the sum: \[ \frac{1}{n^2} \sum_{k=1}^{n} k \sin\left(\frac{k \pi}{2n}\right) \approx \frac{1}{n^2} \cdot n^2 \cdot \int_0^1 x \sin\left(\frac{\pi x}{2}\right) \, dx \] ### Step 4: Evaluate the Integral Now we need to compute the integral: \[ \int_0^1 x \sin\left(\frac{\pi x}{2}\right) \, dx \] Using integration by parts, let: - \( u = x \) and \( dv = \sin\left(\frac{\pi x}{2}\right) dx \) - Then \( du = dx \) and \( v = -\frac{2}{\pi} \cos\left(\frac{\pi x}{2}\right) \) Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] Calculating: \[ \int_0^1 x \sin\left(\frac{\pi x}{2}\right) \, dx = \left[-\frac{2}{\pi} x \cos\left(\frac{\pi x}{2}\right)\right]_0^1 + \frac{2}{\pi} \int_0^1 \cos\left(\frac{\pi x}{2}\right) \, dx \] Evaluating the boundary terms: \[ = -\frac{2}{\pi} \cdot 1 \cdot \cos\left(\frac{\pi}{2}\right) + 0 = 0 \] Now we compute the second integral: \[ \int_0^1 \cos\left(\frac{\pi x}{2}\right) \, dx = \left[\frac{2}{\pi} \sin\left(\frac{\pi x}{2}\right)\right]_0^1 = \frac{2}{\pi} \cdot 1 - 0 = \frac{2}{\pi} \] Putting it all together: \[ \int_0^1 x \sin\left(\frac{\pi x}{2}\right) \, dx = 0 + \frac{2}{\pi} \cdot \frac{2}{\pi} = \frac{4}{\pi^2} \] ### Step 5: Final Limit Calculation Now substituting back into our limit: \[ \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{1}{2} \cdot n^2 \cdot \frac{4}{\pi^2} = \frac{2}{\pi^2} \] Thus, the final answer is: \[ \boxed{\frac{2}{\pi^2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Consider a parabola y = (x^(2))/(4) and the point F (0,1). Let A _(1)(x_(1), y_(1)),A _(2)(x _(2), y_(2)), A_(3)(x_(3), y_(3)),....., A_(n ) (x _(n), y _(n)) are 'n' points on the parabola such x _(k) gt 0 and angle OFA_(k)= (k pi)/(2n) (k =1,2,3,......, n ). Then the value of lim _( n to oo) 1/n sum _(k =1) ^(n) FA_(k), is equal to :

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :