Home
Class 12
MATHS
Let lim(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=...

Let `lim_(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a)`. The value of `f(101)` equals

A

5050

B

5151

C

4950

D

101

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 1} \frac{x^a - ax + a - 1}{(x - 1)^2} = f(a), \] we will follow these steps: ### Step 1: Substitute \( x = 1 + h \) Let \( x = 1 + h \) where \( h \to 0 \) as \( x \to 1 \). Then, we rewrite the limit: \[ \lim_{h \to 0} \frac{(1 + h)^a - a(1 + h) + a - 1}{(h)^2}. \] ### Step 2: Expand \( (1 + h)^a \) using the binomial series Using the binomial expansion for \( (1 + h)^a \): \[ (1 + h)^a = 1 + ah + \frac{a(a-1)}{2}h^2 + O(h^3). \] ### Step 3: Substitute the expansion back into the limit Now substitute this expansion into the limit expression: \[ \lim_{h \to 0} \frac{\left(1 + ah + \frac{a(a-1)}{2}h^2 + O(h^3)\right) - a(1 + h) + a - 1}{h^2}. \] ### Step 4: Simplify the expression Now simplify the numerator: \[ 1 + ah + \frac{a(a-1)}{2}h^2 + O(h^3) - (a + ah) + a - 1. \] This simplifies to: \[ ah - ah + \frac{a(a-1)}{2}h^2 + O(h^3) = \frac{a(a-1)}{2}h^2 + O(h^3). \] ### Step 5: Divide by \( h^2 \) Now, divide the entire expression by \( h^2 \): \[ \lim_{h \to 0} \left(\frac{a(a-1)}{2} + \frac{O(h^3)}{h^2}\right). \] As \( h \to 0 \), the term \( \frac{O(h^3)}{h^2} \to 0 \). Thus, we have: \[ f(a) = \frac{a(a-1)}{2}. \] ### Step 6: Find \( f(101) \) Now, we need to find \( f(101) \): \[ f(101) = \frac{101(101 - 1)}{2} = \frac{101 \times 100}{2} = \frac{10100}{2} = 5050. \] ### Final Answer Thus, the value of \( f(101) \) is \[ \boxed{5050}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let lim_(xto1) (x^(a)-ax+a-1)/((x-1)^(2))=f(a) . Then the value of f(4) is_________.

Let ("lim")_(xvec1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) ,

Evaluate lim_(xto1) (a^(x-1)-1)/(sinpix).

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

Evalaute lim_(xto1) (1+logx-x)/(1-2x+x^(2))

6. lim_(xto1)(1-x^2)^(1/log(1-x))

If lim_(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3) , then the value of bc is _________.

Evalate lim_(xto1^(+)) 2^(-2^((1)/(1-x))).

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)