Home
Class 12
MATHS
The value of lim(nto oo)(sqrt(n^(2)+n+1)...

The value of `lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)])` where [.] denotes the greatest integer function is

A

0

B

`1//2`

C

`2//3`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \sqrt{n^2 + n + 1} - \left[ \sqrt{n^2 + n + 1} \right] \right) \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the expression inside the limit We start with the expression \( \sqrt{n^2 + n + 1} \). As \( n \) approaches infinity, we can approximate this expression. ### Step 2: Approximate \( \sqrt{n^2 + n + 1} \) We can factor out \( n^2 \) from the square root: \[ \sqrt{n^2 + n + 1} = \sqrt{n^2(1 + \frac{1}{n} + \frac{1}{n^2})} = n\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} \] ### Step 3: Expand the square root using Taylor series Using the binomial expansion for large \( n \): \[ \sqrt{1 + x} \approx 1 + \frac{x}{2} \text{ for small } x \] We can apply this to our expression: \[ \sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} \approx 1 + \frac{1/2}{n} + \text{(higher order terms)} \] Thus, \[ \sqrt{n^2 + n + 1} \approx n\left(1 + \frac{1/2}{n}\right) = n + \frac{1}{2} \] ### Step 4: Determine the greatest integer function Now, since \( \sqrt{n^2 + n + 1} \approx n + \frac{1}{2} \), we can conclude: \[ \left[ \sqrt{n^2 + n + 1} \right] = n \text{ for large } n \] ### Step 5: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{n \to \infty} \left( \sqrt{n^2 + n + 1} - n \right) = \lim_{n \to \infty} \left( n + \frac{1}{2} - n \right) = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

The value of lim_(xtoa)[sqrt(2-x)+sqrt(1+x)] , where a in[0,1/2] and [.] denotes the greatest integer function is:

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

The value of lim_(n->oo) n^(1/n)

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.