Home
Class 12
MATHS
lim(xto1)(sin^(2)(x^(3)+x^(2)+x-3))/(1-c...

`lim_(xto1)(sin^(2)(x^(3)+x^(2)+x-3))/(1-cos(x^(2)-4x+3))` has the value equal to

A

18

B

`9//2`

C

`9`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 1} \frac{\sin^2(x^3 + x^2 + x - 3)}{1 - \cos(x^2 - 4x + 3)}, \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( x = 1 \) into the expression. - For the numerator: \[ x^3 + x^2 + x - 3 = 1^3 + 1^2 + 1 - 3 = 1 + 1 + 1 - 3 = 0. \] Thus, \(\sin^2(0) = 0\). - For the denominator: \[ x^2 - 4x + 3 = 1^2 - 4 \cdot 1 + 3 = 1 - 4 + 3 = 0. \] Thus, \(1 - \cos(0) = 1 - 1 = 0\). Since both the numerator and denominator approach \(0\), we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the expressions Next, we need to factor the expressions in the numerator and denominator. - **Numerator**: We can rewrite \(x^3 + x^2 + x - 3\) as \( (x - 1)(x^2 + 2x + 3) \) by using polynomial long division or synthetic division. - **Denominator**: The expression \(x^2 - 4x + 3\) can be factored as \( (x - 1)(x - 3) \). ### Step 3: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{\sin^2((x - 1)(x^2 + 2x + 3))}{1 - \cos((x - 1)(x - 3)}. \] ### Step 4: Apply L'Hôpital's Rule or simplify Since we still have the indeterminate form, we can apply L'Hôpital's Rule or simplify further. Using the small angle approximations: - As \(x \to 1\), \(x - 1 \to 0\). Thus, we can let \(a = x - 1\), making \(x = 1 + a\) and \(a \to 0\). - The numerator becomes \(\sin^2(a \cdot (3 + 2a))\) and the denominator becomes \(1 - \cos(a \cdot (2 + a))\). ### Step 5: Evaluate the limit using small angle approximations Using the small angle approximations: - \(\sin(k) \approx k\) when \(k\) is small, so \(\sin^2(k) \approx k^2\). - \(1 - \cos(k) \approx \frac{k^2}{2}\). Thus, we have: \[ \lim_{a \to 0} \frac{(a(3 + 2a))^2}{\frac{(a(2 + a))^2}{2}} = \lim_{a \to 0} \frac{(a^2(3 + 2a)^2)}{\frac{1}{2} a^2(2 + a)^2}. \] ### Step 6: Cancel \(a^2\) and simplify Canceling \(a^2\) from numerator and denominator gives: \[ \lim_{a \to 0} \frac{(3 + 2a)^2}{\frac{1}{2}(2 + a)^2}. \] ### Step 7: Substitute \(a = 0\) Now substituting \(a = 0\): \[ \frac{(3 + 0)^2}{\frac{1}{2}(2 + 0)^2} = \frac{9}{\frac{1}{2} \cdot 4} = \frac{9}{2}. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 1} \frac{\sin^2(x^3 + x^2 + x - 3)}{1 - \cos(x^2 - 4x + 3)} = 18. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

lim_(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) ,

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)