Home
Class 12
MATHS
For a certain value of 'c' lim (x to oo)...

For a certain value of 'c' `lim _(x to oo) [(x ^(5) +7x^(4)+2 )^(c ) -x]` is finite and non-zero. Then the vlaue oimit is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the value of \( c \) such that \[ \lim_{x \to \infty} \left[ (x^5 + 7x^4 + 2)^c - x \right] \] is finite and non-zero. ### Step-by-Step Solution: 1. **Identify the dominant term**: As \( x \) approaches infinity, the term \( x^5 \) in \( x^5 + 7x^4 + 2 \) dominates. Thus, we can factor out \( x^5 \): \[ (x^5 + 7x^4 + 2)^c = x^{5c} \left(1 + \frac{7}{x} + \frac{2}{x^5}\right)^c \] 2. **Simplify the expression inside the limit**: As \( x \to \infty \), the terms \( \frac{7}{x} \) and \( \frac{2}{x^5} \) approach 0. Therefore, we can approximate: \[ \left(1 + \frac{7}{x} + \frac{2}{x^5}\right)^c \approx 1 + c\left(\frac{7}{x}\right) \text{ (using the binomial expansion)} \] 3. **Substituting back into the limit**: Now substituting back into our limit: \[ \lim_{x \to \infty} \left[ x^{5c} \left(1 + c\frac{7}{x}\right) - x \right] \] This simplifies to: \[ \lim_{x \to \infty} \left[ x^{5c} + 7c x^{5c - 1} - x \right] \] 4. **Setting the limit to be finite**: For the limit to be finite and non-zero, the powers of \( x \) must balance. This means: \[ 5c = 1 \quad \text{(to match the power of } x \text{ with } x^1\text{)} \] Solving for \( c \): \[ c = \frac{1}{5} \] 5. **Substituting \( c \) back into the limit**: Now we substitute \( c = \frac{1}{5} \) back into our limit: \[ \lim_{x \to \infty} \left[ x^{5 \cdot \frac{1}{5}} + 7 \cdot \frac{1}{5} x^{5 \cdot \frac{1}{5} - 1} - x \right] \] This simplifies to: \[ \lim_{x \to \infty} \left[ x + \frac{7}{5} - x \right] = \lim_{x \to \infty} \frac{7}{5} = \frac{7}{5} \] ### Final Answer: Thus, the value of the limit is: \[ \frac{7}{5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

For a certain value of 'c' lim _(x to oo) [(x ^(5) +7x^(4)+2 )^(c ) -x] is finite and non-zero. Then the value of limit is :

Find the value of lim_(x->oo)(2-1/x+4/x^2)

lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

Write the value of (lim)_(x->oo)(sin x\ )/x

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))

lim_(x->oo)(e^(11x)-7x)^(1/(3x))

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

If lim_(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-7x+12)=l (finite real number), ten

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is