Home
Class 12
MATHS
lim(x->oo)(sqrt(x^4+ax^3+3x^2+b x+2)-sqr...

`lim_(x->oo)(sqrt(x^4+ax^3+3x^2+b x+2)-sqrt(x^4+2x^3+cx^2+3x-d))=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to \infty} \left( \sqrt{x^4 + ax^3 + 3x^2 + bx + 2} - \sqrt{x^4 + 2x^3 + cx^2 + 3x - d} \right) = 4, \] we will follow these steps: ### Step 1: Rationalization We start by rationalizing the expression. We multiply and divide by the conjugate of the expression: \[ \frac{\left( \sqrt{x^4 + ax^3 + 3x^2 + bx + 2} - \sqrt{x^4 + 2x^3 + cx^2 + 3x - d} \right) \left( \sqrt{x^4 + ax^3 + 3x^2 + bx + 2} + \sqrt{x^4 + 2x^3 + cx^2 + 3x - d} \right)}{\sqrt{x^4 + ax^3 + 3x^2 + bx + 2} + \sqrt{x^4 + 2x^3 + cx^2 + 3x - d}}. \] ### Step 2: Simplifying the Numerator The numerator simplifies to: \[ (x^4 + ax^3 + 3x^2 + bx + 2) - (x^4 + 2x^3 + cx^2 + 3x - d). \] This simplifies to: \[ (a - 2)x^3 + (3 - c)x^2 + (b - 3)x + (2 + d). \] ### Step 3: Simplifying the Denominator The denominator becomes: \[ \sqrt{x^4 + ax^3 + 3x^2 + bx + 2} + \sqrt{x^4 + 2x^3 + cx^2 + 3x - d}. \] ### Step 4: Dividing by \(x^2\) Next, we divide the numerator and denominator by \(x^2\): \[ \frac{(a - 2)x + (3 - c) + \frac{(b - 3)}{x} + \frac{(2 + d)}{x^2}}{\sqrt{1 + \frac{a}{x} + \frac{3}{x^2} + \frac{b}{x^3} + \frac{2}{x^4}} + \sqrt{1 + \frac{2}{x} + \frac{c}{x^2} + \frac{3}{x^3} - \frac{d}{x^4}}}. \] ### Step 5: Taking the Limit as \(x \to \infty\) As \(x \to \infty\), the terms \(\frac{(b - 3)}{x}\) and \(\frac{(2 + d)}{x^2}\) vanish, and we are left with: \[ \frac{(a - 2)x + (3 - c)}{2}. \] ### Step 6: Setting the Limit Equal to 4 For the limit to equal 4, we need: \[ \frac{(a - 2)x + (3 - c)}{2} = 4. \] This implies: \[ (a - 2)x + (3 - c) = 8. \] ### Step 7: Finding Values of \(a\) and \(c\) For this equation to hold as \(x \to \infty\), the coefficient of \(x\) must be zero: 1. \(a - 2 = 0 \implies a = 2\). 2. The constant term must equal 8: \(3 - c = 8 \implies c = -5\). ### Step 8: Conclusion The values we have found are: - \(a = 2\) - \(c = -5\) The values of \(b\) and \(d\) are not determined by the limit condition and can be any real numbers.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x->2)(sqrt(x^2+5)-3)/(x^2-4)

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

Evaluate: lim_(x->oo)((sqrt(x^2+1)- ^3sqrt(x^2+1)) / (4sqrt(x^4+1) -^5sqrt(x^4+1 )))

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

3x^2-4sqrt3x+4=0

{:("Column-I","Column-II"),(A.lim_(x to 0) (cos x - cos3x)/(x("Sin"x - "sin"3x)),p. 3),(B.lim_(x to 0) ("sin" 4x)/(tan 2x),q. -2),(C. lim_(x to oo) (x^(4) + 2x^(3) + 3)/(2x^(4) - x + 2),r.(1)/(2)),(D.lim_(x to 2) (sqrt(3x^(2) + 3x - 9) - sqrt(3x + 3))/(x - 2),s. 2):}

lim_(x->sqrt(3))(x^2-3)/(x^2+3sqrt(3)x-12)

Evaluate lim_(x to oo ) [sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)].

lim_(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))