Home
Class 12
MATHS
If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo ...

If `lim_(xtoa)f(x)=1` and `lim_(xtoa)g(x)=oo` then `lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x))` `lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x)` is equal to

A

`a^(2//3)+b^(2//3)+c^(2//3)`

B

`abc`

C

`(abc)^(2//3)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow the steps outlined in the video transcript. Let's break it down step by step. ### Step-by-Step Solution 1. **Identify the Limit Expression**: We need to evaluate the limit: \[ \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{2}{x}} \] 2. **Recognize the Form**: As \( x \to 0 \), both \( a^x \), \( b^x \), and \( c^x \) approach 1. Therefore, the expression inside the limit approaches: \[ \frac{1 + 1 + 1}{3} = 1 \] Thus, we have a \( 1^{\infty} \) form. 3. **Apply the Limit Formula**: We can use the formula: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1) g(x)} \] Here, let \( f(x) = \frac{a^x + b^x + c^x}{3} \) and \( g(x) = \frac{2}{x} \). 4. **Calculate \( f(x) - 1 \)**: We need to find \( f(x) - 1 \): \[ f(x) - 1 = \frac{a^x + b^x + c^x}{3} - 1 = \frac{a^x + b^x + c^x - 3}{3} \] 5. **Multiply by \( g(x) \)**: Now, we multiply \( f(x) - 1 \) by \( g(x) \): \[ (f(x) - 1) g(x) = \left(\frac{a^x + b^x + c^x - 3}{3}\right) \cdot \frac{2}{x} = \frac{2(a^x + b^x + c^x - 3)}{3x} \] 6. **Evaluate the Limit**: We need to evaluate: \[ \lim_{x \to 0} \frac{2(a^x + b^x + c^x - 3)}{3x} \] Using the Taylor expansion for \( a^x \), \( b^x \), and \( c^x \) around \( x = 0 \): \[ a^x \approx 1 + x \ln a, \quad b^x \approx 1 + x \ln b, \quad c^x \approx 1 + x \ln c \] Therefore: \[ a^x + b^x + c^x \approx 3 + x(\ln a + \ln b + \ln c) \] Thus: \[ a^x + b^x + c^x - 3 \approx x(\ln a + \ln b + \ln c) \] 7. **Substituting Back**: Substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{2(x(\ln a + \ln b + \ln c))}{3x} = \lim_{x \to 0} \frac{2(\ln a + \ln b + \ln c)}{3} = \frac{2(\ln a + \ln b + \ln c)}{3} \] 8. **Final Limit**: Now, we can substitute this result back into our exponential limit: \[ \lim_{x \to 0} f(x)^{g(x)} = e^{\frac{2(\ln a + \ln b + \ln c)}{3}} = (a \cdot b \cdot c)^{\frac{2}{3}} \] ### Final Answer: \[ \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{2}{x}} = (abc)^{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

lim_(xto oo)(x/(1+x))^(x) is

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(xtoa^(+))f(x)=l=lim_(xtoa^(-))g(x) and lim_(xtoa^(-))f(x)=m=lim_(xtoa^(+))g(x) , the function f(x).g(x) is

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

lim_(xto0)(|sin x|)/x is equal to :

lim_(xto0^(-))(-In({x}+|[x]|))^({x}) is equal to

Evaluate lim_(xto0^(+)) x^(x)"and "lim_(xto0^(+))x^(x^(x))