Home
Class 12
MATHS
Find |A| If A = |(x^2, 2x), (x^4 , 5x)...

Find |A| If `A = |(x^2, 2x), (x^4 , 5x)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant |A| where \[ A = \begin{pmatrix} x^2 & 2x \\ x^4 & 5x \end{pmatrix} \] we will follow the steps for calculating the determinant of a 2x2 matrix. ### Step-by-step Solution: 1. **Write the determinant formula for a 2x2 matrix:** The determinant of a matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is given by the formula: \[ |A| = ad - bc \] 2. **Identify the elements of the matrix A:** For our matrix \[ A = \begin{pmatrix} x^2 & 2x \\ x^4 & 5x \end{pmatrix} \] we can identify: - \( a = x^2 \) - \( b = 2x \) - \( c = x^4 \) - \( d = 5x \) 3. **Substitute the values into the determinant formula:** Now, we substitute the identified values into the determinant formula: \[ |A| = (x^2)(5x) - (2x)(x^4) \] 4. **Calculate the products:** - First term: \( (x^2)(5x) = 5x^3 \) - Second term: \( (2x)(x^4) = 2x^5 \) 5. **Combine the terms:** Now we combine the results: \[ |A| = 5x^3 - 2x^5 \] 6. **Factor out the common term:** We can factor out \( x^3 \) from both terms: \[ |A| = x^3(5 - 2x^2) \] ### Final Result: Thus, the determinant |A| is: \[ |A| = x^3(5 - 2x^2) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If |A| = 2 and A = | (2x, 6) , (5x, 1)| then find the value of x

Find values of x , if(i) |(2, 4),( 5, 1)|-|(2x,4),( 6,x)| (ii) |(2, 3),( 4, 5)|-|(x,3),( 2x,5)|

Find f ' (x) if f(x)=2x^3-5x^2-4x+3 ,

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

If 2(x^(2) + 1)= 5x , find x- (1)/(x)

If the mean of x+2,\ 2x+3,\ 3x+4,\ 4x+5 is x+2 , find x

Find the domain of the function f(x) =(x^2-3x+5)/(x^2-5x+4) .

Evaluate the following limits : Lim_(x to 1) (x^(4) - 3x^(3) +2)/(x^(3)-5x^(2)+3x+1)

If the mean of x+2,\ 2x+3,\ 3x+4,\ 4x+5\ i s\ x+2, find x