Home
Class 12
MATHS
Let f(x)=lim(ntooo)(cos sqrt(x/n))^(n),g...

Let `f(x)=lim_(ntooo)(cos sqrt(x/n))^(n),g(x)=lim_(nto oo)(1-x+x root(n)(e))^(n)`
Now consider the function `y=h(x)` where `h(x)=tan^(-1)(g^(-1)f^(-1)(x))`.
Range of the function `y=h(x)` is

A

`(0,(pi)/2)`

B

`(-(pi)/2,0)`

C

`R`

D

`(-(pi)/2,(pi)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the functions \( f(x) \) and \( g(x) \) first, and then we will analyze the function \( h(x) \) to determine its range. ### Step 1: Finding \( f(x) \) Given: \[ f(x) = \lim_{n \to \infty} \left( \cos\left(\sqrt{\frac{x}{n}}\right) \right)^n \] As \( n \to \infty \), \( \sqrt{\frac{x}{n}} \to 0 \). Therefore, we can use the limit: \[ \cos\left(\sqrt{\frac{x}{n}}\right) \to \cos(0) = 1 \] This is an indeterminate form \( 1^\infty \). We can rewrite it using the exponential function: \[ f(x) = \lim_{n \to \infty} e^{n \ln\left(\cos\left(\sqrt{\frac{x}{n}}\right)\right)} \] Using the approximation \( \cos(y) \approx 1 - \frac{y^2}{2} \) for small \( y \): \[ \cos\left(\sqrt{\frac{x}{n}}\right) \approx 1 - \frac{\left(\sqrt{\frac{x}{n}}\right)^2}{2} = 1 - \frac{x}{2n} \] Thus, \[ \ln\left(\cos\left(\sqrt{\frac{x}{n}}\right)\right) \approx -\frac{x}{2n} \] Substituting this back: \[ f(x) = \lim_{n \to \infty} e^{n \left(-\frac{x}{2n}\right)} = e^{-\frac{x}{2}} \] ### Step 2: Finding \( f^{-1}(x) \) To find \( f^{-1}(x) \): \[ y = e^{-\frac{x}{2}} \implies -\frac{x}{2} = \ln(y) \implies x = -2 \ln(y) \] Thus, \[ f^{-1}(x) = -2 \ln(x) \] ### Step 3: Finding \( g(x) \) Given: \[ g(x) = \lim_{n \to \infty} \left(1 - x + x e^{\frac{1}{n}}\right)^n \] As \( n \to \infty \), \( e^{\frac{1}{n}} \to 1 \): \[ g(x) = \lim_{n \to \infty} \left(1 - x + x\right)^n = 1^n = 1 \] This is also an indeterminate form \( 1^\infty \). We can rewrite it: \[ g(x) = \lim_{n \to \infty} e^{n \ln\left(1 - x + x e^{\frac{1}{n}}\right)} \] Using the approximation \( \ln(1 + y) \approx y \) for small \( y \): \[ \ln\left(1 - x + x e^{\frac{1}{n}}\right) \approx \ln(1 - x + x) = \ln(1) = 0 \] Thus, \[ g(x) = e^{\lim_{n \to \infty} n \cdot 0} = e^0 = 1 \] ### Step 4: Finding \( g^{-1}(x) \) Since \( g(x) = e^x \), we find: \[ g^{-1}(x) = \ln(x) \] ### Step 5: Finding \( h(x) \) Now we can find \( h(x) \): \[ h(x) = \tan^{-1}(g^{-1}(f^{-1}(x))) = \tan^{-1}(\ln(-2 \ln(x))) \] ### Step 6: Finding the Range of \( h(x) \) To find the range of \( h(x) \): 1. The argument \( -2 \ln(x) \) is defined for \( x > 0 \). 2. As \( x \to 0^+ \), \( -2 \ln(x) \to \infty \) and \( \ln(-2 \ln(x)) \to \infty \). 3. As \( x \to 1 \), \( -2 \ln(1) = 0 \) and \( \ln(0) \to -\infty \). Thus, as \( x \) varies from \( 0 \) to \( 1 \), \( h(x) \) will vary from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \). ### Final Range of \( h(x) \) The range of the function \( y = h(x) \) is: \[ \boxed{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

lim_(x->oo)(1-x+x.e^(1/n))^n

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Consider the function f(x)=lim_(nto infty) ((1+cosx)^(n)+5lnx)/(2+(1+cosx)^(n)) , then

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then