Home
Class 12
MATHS
The value of lim(xto0)(x cosx-log(1+x))/...

The value of `lim_(xto0)(x cosx-log(1+x))/(x^(2))` is

A

`1`

B

`1/4`

C

`1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x \cos x - \log(1+x)}{x^2} \), we can use the Taylor series expansions for \( \cos x \) and \( \log(1+x) \). ### Step-by-step Solution: 1. **Expand \( \cos x \)**: The Taylor series expansion of \( \cos x \) around \( x = 0 \) is: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots \] 2. **Expand \( \log(1+x) \)**: The Taylor series expansion of \( \log(1+x) \) around \( x = 0 \) is: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \] 3. **Substitute the expansions into the limit**: We substitute these expansions into the limit expression: \[ x \cos x - \log(1+x) = x \left(1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots\right) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right) \] This simplifies to: \[ = x - \frac{x^3}{2} + \frac{x^5}{24} - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} + \cdots \] Combining like terms: \[ = \left(-\frac{x^3}{2} + \frac{x^2}{2} - \frac{x^3}{3} + \cdots\right) \] 4. **Combine the terms**: The leading terms after simplification will be: \[ = \frac{x^2}{2} - \left(\frac{3}{6} + \frac{2}{6}\right)x^3 + \cdots \] The \( x \) terms cancel out, and we focus on the \( x^2 \) and \( x^3 \) terms. 5. **Divide by \( x^2 \)**: Now we divide the entire expression by \( x^2 \): \[ \frac{\frac{x^2}{2} - \left(\frac{5}{6}\right)x^3 + \cdots}{x^2} = \frac{1}{2} - \frac{5}{6}x + \cdots \] 6. **Take the limit as \( x \to 0 \)**: As \( x \) approaches 0, the higher order terms vanish: \[ \lim_{x \to 0} \left(\frac{1}{2} - \frac{5}{6}x + \cdots\right) = \frac{1}{2} \] Thus, the value of the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(p^(x)-q^(x))/(r^(x)-s^(x)) is

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The value of lim_(xto0)(1/(x^(2))-cotx) is

Find lim_(xto0)(cot^(-1)(1/x))/x