Home
Class 12
MATHS
The value of lim(xto0)(1/(x^(2))-cotx) i...

The value of `lim_(xto0)(1/(x^(2))-cotx)` is

A

`0`

B

`1`

C

`1/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 0} \left( \frac{1}{x^2} - \cot x \right) \), we can follow these steps: ### Step 1: Rewrite Cotangent We start by rewriting the cotangent function in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, we can express the limit as: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \frac{\cos x}{\sin x} \right) \] ### Step 2: Find a Common Denominator Next, we find a common denominator for the two fractions: \[ \lim_{x \to 0} \left( \frac{\sin x - x^2 \cos x}{x^2 \sin x} \right) \] ### Step 3: Evaluate the Limit Substituting \( x = 0 \) directly into the expression gives us: \[ \frac{0 - 0}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule We differentiate the numerator and the denominator: - The derivative of the numerator \( \sin x - x^2 \cos x \) is: \[ \cos x - (2x \cos x - x^2 \sin x) = \cos x - 2x \cos x + x^2 \sin x \] - The derivative of the denominator \( x^2 \sin x \) is: \[ 2x \sin x + x^2 \cos x \] ### Step 5: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{\cos x - 2x \cos x + x^2 \sin x}{2x \sin x + x^2 \cos x} \] ### Step 6: Evaluate the New Limit Substituting \( x = 0 \) again gives: \[ \frac{1 - 0 + 0}{0 + 0} = \frac{1}{0} \] This indicates that the limit approaches infinity. ### Conclusion Thus, the limit \( \lim_{x \to 0} \left( \frac{1}{x^2} - \cot x \right) \) is undefined (or approaches infinity).
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(p^(x)-q^(x))/(r^(x)-s^(x)) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of lim_(xto0)(cos ax)^(cosec^(2)bx) is

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is