Home
Class 12
MATHS
The value of lim(nto oo)(1^(3)+2^(3)+3^(...

The value of `lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))`

A

`1/4`

B

`1/2`

C

`1/(2sqrt(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \ldots + n^3}{(n^2 + 1)^2} \), we will follow these steps: ### Step 1: Use the formula for the sum of cubes The sum of the first \( n \) cubes can be expressed using the formula: \[ 1^3 + 2^3 + 3^3 + \ldots + n^3 = \left( \frac{n(n+1)}{2} \right)^2 \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \frac{\left( \frac{n(n+1)}{2} \right)^2}{(n^2 + 1)^2} \] ### Step 2: Simplify the expression Now, substituting the sum of cubes into the limit gives: \[ \lim_{n \to \infty} \frac{\left( \frac{n(n+1)}{2} \right)^2}{(n^2 + 1)^2} = \lim_{n \to \infty} \frac{n^2(n+1)^2}{4(n^2 + 1)^2} \] ### Step 3: Expand the numerator and denominator Expanding the numerator: \[ n^2(n+1)^2 = n^2(n^2 + 2n + 1) = n^4 + 2n^3 + n^2 \] And the denominator: \[ (n^2 + 1)^2 = n^4 + 2n^2 + 1 \] Thus, we have: \[ \lim_{n \to \infty} \frac{n^4 + 2n^3 + n^2}{4(n^4 + 2n^2 + 1)} \] ### Step 4: Divide by the highest power of \( n \) To evaluate the limit as \( n \to \infty \), we divide both the numerator and the denominator by \( n^4 \): \[ \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{4(1 + \frac{2}{n^2} + \frac{1}{n^4})} \] ### Step 5: Evaluate the limit As \( n \to \infty \), the terms \( \frac{2}{n} \), \( \frac{1}{n^2} \), \( \frac{2}{n^2} \), and \( \frac{1}{n^4} \) all approach 0. Therefore, we have: \[ \lim_{n \to \infty} \frac{1 + 0 + 0}{4(1 + 0 + 0)} = \frac{1}{4} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .