Home
Class 12
MATHS
The value of lim(n -> oo)(1.n+2.(n-1)+3....

The value of `lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)`

A

`1`

B

`-1`

C

`1/(sqrt(2)`

D

`1/2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n rarr oo)2^(1/n)

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____

Write the value of (lim)_(n->oo)(1+2+3+....+n)/(n^2)\

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these