Home
Class 12
MATHS
The value of lim(xto oo)(x+2)tan^(-1)(x+...

The value of `lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x)` is

A

`(pi)/2`

B

Doesn't exist

C

`(pi)/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( (x + 2) \tan^{-1}(x + 2) - x \tan^{-1}(x) \right) \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the expression: \[ \lim_{x \to \infty} \left( (x + 2) \tan^{-1}(x + 2) - x \tan^{-1}(x) \right) \] We can expand the first term: \[ = \lim_{x \to \infty} \left( x \tan^{-1}(x + 2) + 2 \tan^{-1}(x + 2) - x \tan^{-1}(x) \right) \] This simplifies to: \[ = \lim_{x \to \infty} \left( x \left( \tan^{-1}(x + 2) - \tan^{-1}(x) \right) + 2 \tan^{-1}(x + 2) \right) \] ### Step 2: Analyze the limit of the arctangent difference Next, we focus on the term \( \tan^{-1}(x + 2) - \tan^{-1}(x) \): Using the property of the arctangent function: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left( \frac{a - b}{1 + ab} \right) \] We can apply this: \[ \tan^{-1}(x + 2) - \tan^{-1}(x) = \tan^{-1}\left( \frac{(x + 2) - x}{1 + (x + 2)x} \right) = \tan^{-1}\left( \frac{2}{1 + x^2 + 2x} \right) \] ### Step 3: Substitute back into the limit Substituting this back into our limit gives: \[ \lim_{x \to \infty} \left( x \tan^{-1}\left( \frac{2}{1 + x^2 + 2x} \right) + 2 \tan^{-1}(x + 2) \right) \] ### Step 4: Evaluate the limit of the arctangent term As \( x \to \infty \), \( \frac{2}{1 + x^2 + 2x} \to 0 \), thus: \[ \tan^{-1}\left( \frac{2}{1 + x^2 + 2x} \right) \to 0 \] Therefore, the first term becomes: \[ x \cdot 0 \to 0 \] ### Step 5: Evaluate the limit of the second term Now we evaluate the second term: \[ \lim_{x \to \infty} 2 \tan^{-1}(x + 2) = 2 \cdot \frac{\pi}{2} = \pi \] ### Step 6: Combine the results Putting it all together, we have: \[ \lim_{x \to \infty} \left( (x + 2) \tan^{-1}(x + 2) - x \tan^{-1}(x) \right) = 0 + \pi = \pi \] ### Final Answer Thus, the value of the limit is: \[ \pi \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo)(x/(1+x))^(x) is

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to