Home
Class 12
MATHS
The value of lim(xto4)((cos alpha)^(x)-(...

The value of `lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2)` is

A

`log(cos alpha)+(sin alpha)^(4)log(sin alpha)`

B

`(cos^(4)alpha)log(cos alpha)-(sin alpha)^(4)log(sinalpha)`

C

`(cos^(4)alpha)log(cos alpha)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit: \[ \lim_{x \to 4} \frac{(\cos \alpha)^x - (\sin \alpha)^x - \cos 2\alpha}{x - 4} \] **Step 1: Check the form of the limit** First, we substitute \( x = 4 \) into the numerator: \[ (\cos \alpha)^4 - (\sin \alpha)^4 - \cos 2\alpha \] We need to check if this results in \( 0 \): \[ \cos^4 \alpha - \sin^4 \alpha - \cos 2\alpha \] Using the identity \( \cos^4 \alpha - \sin^4 \alpha = (\cos^2 \alpha + \sin^2 \alpha)(\cos^2 \alpha - \sin^2 \alpha) \) and knowing that \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ \cos^4 \alpha - \sin^4 \alpha = 1 \cdot (\cos^2 \alpha - \sin^2 \alpha) = \cos^2 \alpha - \sin^2 \alpha \] Now, recall that \( \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \). Thus, we have: \[ \cos^4 \alpha - \sin^4 \alpha - \cos 2\alpha = (\cos^2 \alpha - \sin^2 \alpha) - (\cos^2 \alpha - \sin^2 \alpha) = 0 \] Since both the numerator and denominator approach 0 as \( x \to 4 \), we have a \( \frac{0}{0} \) form. **Step 2: Apply L'Hôpital's Rule** According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The derivative of the numerator \( (\cos \alpha)^x - (\sin \alpha)^x - \cos 2\alpha \): Using the formula for the derivative of \( a^x \), which is \( a^x \ln a \): \[ \frac{d}{dx}[(\cos \alpha)^x] = (\cos \alpha)^x \ln(\cos \alpha) \] \[ \frac{d}{dx}[(\sin \alpha)^x] = (\sin \alpha)^x \ln(\sin \alpha) \] \[ \frac{d}{dx}[-\cos 2\alpha] = 0 \] Thus, the derivative of the numerator is: \[ (\cos \alpha)^x \ln(\cos \alpha) - (\sin \alpha)^x \ln(\sin \alpha) \] - The derivative of the denominator \( x - 4 \) is simply \( 1 \). Now we can rewrite the limit: \[ \lim_{x \to 4} \left[ (\cos \alpha)^x \ln(\cos \alpha) - (\sin \alpha)^x \ln(\sin \alpha) \right] \] **Step 3: Substitute \( x = 4 \)** Now we substitute \( x = 4 \): \[ \lim_{x \to 4} \left[ (\cos \alpha)^4 \ln(\cos \alpha) - (\sin \alpha)^4 \ln(\sin \alpha) \right] \] This gives us: \[ (\cos \alpha)^4 \ln(\cos \alpha) - (\sin \alpha)^4 \ln(\sin \alpha) \] **Final Result:** The value of the limit is: \[ (\cos \alpha)^4 \ln(\cos \alpha) - (\sin \alpha)^4 \ln(\sin \alpha) \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

cos2 alpha-cos3alpha-cos4alpha+cos5alpha simplifies to :

lim_(xto0) (sin(alpha+beta)x+sin(alpha-beta)x+sin2alphax)/(cos2betax-cos2alphax).x

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

int ( cos 2x - cos 2 alpha)/( cos x - cos alpha) dx is equal to