Home
Class 12
MATHS
The value of lim(xto 0)(e-(1+x)^(1//x))/...

The value of `lim_(xto 0)(e-(1+x)^(1//x))/(tanx)` is

A

`e`

B

`(11e)/24`

C

`e/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{e - (1+x)^{1/x}}{\tan x} \), we can follow these steps: ### Step 1: Identify the limit expression We start with the limit: \[ \lim_{x \to 0} \frac{e - (1+x)^{1/x}}{\tan x} \] ### Step 2: Evaluate the limit of the numerator We know that: \[ \lim_{x \to 0} (1+x)^{1/x} = e \] Thus, as \( x \to 0 \), the numerator \( e - (1+x)^{1/x} \) approaches \( e - e = 0 \). ### Step 3: Evaluate the limit of the denominator Next, we evaluate the denominator \( \tan x \) as \( x \to 0 \): \[ \lim_{x \to 0} \tan x = 0 \] ### Step 4: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{e - (1+x)^{1/x}}{\tan x} = \lim_{x \to 0} \frac{-\frac{d}{dx}((1+x)^{1/x})}{\frac{d}{dx}(\tan x)} \] ### Step 5: Differentiate the numerator To differentiate \( (1+x)^{1/x} \), we can use the logarithmic differentiation: Let \( y = (1+x)^{1/x} \). Taking the natural logarithm: \[ \ln y = \frac{1}{x} \ln(1+x) \] Differentiating both sides: \[ \frac{1}{y} \frac{dy}{dx} = -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \] Thus, \[ \frac{dy}{dx} = y \left( -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \right) \] Substituting \( y = (1+x)^{1/x} \): \[ \frac{d}{dx}((1+x)^{1/x}) = (1+x)^{1/x} \left( -\frac{1}{x^2} \ln(1+x) + \frac{1}{x(1+x)} \right) \] ### Step 6: Differentiate the denominator The derivative of \( \tan x \) is: \[ \frac{d}{dx}(\tan x) = \sec^2 x \] ### Step 7: Substitute back to L'Hôpital's Rule Now substituting back into L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{-\frac{d}{dx}((1+x)^{1/x})}{\sec^2 x} \] ### Step 8: Evaluate the limit As \( x \to 0 \), \( \sec^2 x \to 1 \) and we need to evaluate \( -\frac{d}{dx}((1+x)^{1/x}) \) at \( x = 0 \). After simplification and substituting \( x = 0 \), we find that the limit evaluates to \( 0 \). ### Final Result Thus, the value of the limit is: \[ \lim_{x \to 0} \frac{e - (1+x)^{1/x}}{\tan x} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate : lim_(xto0) (1+ax)^(1//x)

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate : lim_(xto 0)(3^(x)-2^(x))/(tanx)

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

The value of lim_(xto0)(1/(x^(2))-cotx) is