Home
Class 12
MATHS
The value of lim(xtooo){lim(ntooo)([1^(2...

The value of `lim_(xtooo){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))}` is (wehre [.] denotes the greatest integer function)

A

A. `x/3+(sinx)/3`

B

B. `x/3+(sinx)^(x)`

C

C. `1/3`

D

D. 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0^+} \lim_{n \to \infty} \frac{[1^2 \sin^x x] + [2^2 \sin^x x] + \ldots + [n^2 \sin^x x]}{n^3} \] ### Step 1: Rewrite the expression We can express the sum in the numerator as: \[ \sum_{k=1}^{n} k^2 \sin^x x \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0^+} \lim_{n \to \infty} \frac{\sin^x x \sum_{k=1}^{n} k^2}{n^3} \] ### Step 2: Use the formula for the sum of squares The formula for the sum of the squares of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] Substituting this into our expression gives: \[ \lim_{x \to 0^+} \lim_{n \to \infty} \frac{\sin^x x \cdot \frac{n(n+1)(2n+1)}{6}}{n^3} \] ### Step 3: Simplify the expression Now, simplifying the fraction: \[ \frac{n(n+1)(2n+1)}{6n^3} = \frac{(n(n+1)(2n+1))}{6n^3} = \frac{(2n^3 + 3n^2 + n)}{6n^3} = \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{6} \] As \( n \to \infty \), the terms \( \frac{3}{n} \) and \( \frac{1}{n^2} \) approach 0, so we have: \[ \lim_{n \to \infty} \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{6} = \frac{2}{6} = \frac{1}{3} \] ### Step 4: Substitute back into the limit Now, substituting this back into our limit gives: \[ \lim_{x \to 0^+} \sin^x x \cdot \frac{1}{3} \] ### Step 5: Evaluate \( \sin^x x \) Next, we need to evaluate \( \sin^x x \) as \( x \to 0^+ \). We know that: \[ \sin x \approx x \quad \text{as } x \to 0 \] Thus: \[ \sin^x x \approx x^x \] And we can express \( x^x \) as: \[ x^x = e^{x \ln x} \] As \( x \to 0^+ \), \( x \ln x \to 0 \). Therefore: \[ \lim_{x \to 0^+} x^x = e^0 = 1 \] ### Step 6: Final limit evaluation Putting everything together, we have: \[ \lim_{x \to 0^+} \sin^x x \cdot \frac{1}{3} = 1 \cdot \frac{1}{3} = \frac{1}{3} \] ### Step 7: Apply the greatest integer function Since we need to apply the greatest integer function, we have: \[ \lfloor \frac{1}{3} \rfloor = 0 \] Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.