Home
Class 12
MATHS
The value of lim(n->oo) sum(k=1)^n log(1...

The value of `lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n)`,is

A

`log_(e)(e/4)`

B

`log_(e)(4/e)`

C

`log_(e)4`

D

None of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

lim_(n->oo) nsin(1/n)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -