Home
Class 12
MATHS
The values of a and b so that the functi...

The values of a and b so that the function `f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):}` is continuous for `x in [0, pi]`, are

A

`a = (pi)/(6),b=-(pi)/(6)`

B

`a = -(pi)/(6), b = (pi)/(12)`

C

`a = (pi)/(6), b = -(pi)/(12)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a \sqrt{2} \sin x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 2x \cot x + b & \text{for } \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2x - b \sin x & \text{for } \frac{\pi}{2} < x \leq \pi \end{cases} \] is continuous on the interval \([0, \pi]\), we need to check the continuity at the points \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = \frac{\pi}{4} \) 1. **Calculate \( f\left(\frac{\pi}{4}\right) \)**: \[ f\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\pi}{4} \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{2} + b \] 2. **Calculate \( \lim_{x \to \frac{\pi}{4}^-} f(x) \)**: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \lim_{h \to 0} \left( \frac{\pi}{4} + a \sqrt{2} \sin\left(\frac{\pi}{4} - h\right) \right) \] Since \( \sin\left(\frac{\pi}{4} - h\right) \approx \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) as \( h \to 0 \): \[ = \frac{\pi}{4} + a \sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a \] 3. **Calculate \( \lim_{x \to \frac{\pi}{4}^+} f(x) \)**: \[ \lim_{x \to \frac{\pi}{4}^+} f(x) = \lim_{h \to 0} \left( 2\left(\frac{\pi}{4} + h\right) \cot\left(\frac{\pi}{4} + h\right) + b \right) \] As \( h \to 0 \), \( \cot\left(\frac{\pi}{4} + h\right) \approx 1 \): \[ = \frac{\pi}{2} + b \] 4. **Set the limits equal for continuity**: \[ \frac{\pi}{2} + b = \frac{\pi}{4} + a \] Rearranging gives us Equation (1): \[ a - b = \frac{\pi}{4} \quad \text{(1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) 1. **Calculate \( f\left(\frac{\pi}{2}\right) \)**: \[ f\left(\frac{\pi}{2}\right) = 2 \cdot \frac{\pi}{2} \cot\left(\frac{\pi}{2}\right) + b = b \quad \text{(since } \cot\left(\frac{\pi}{2}\right) = 0\text{)} \] 2. **Calculate \( \lim_{x \to \frac{\pi}{2}^-} f(x) \)**: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = b \] 3. **Calculate \( \lim_{x \to \frac{\pi}{2}^+} f(x) \)**: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{h \to 0} \left( a \cos(2(\frac{\pi}{2} + h)) - b \sin(\frac{\pi}{2} + h) \right) \] Since \( \cos(\pi + 2h) \approx -1 \) and \( \sin(\frac{\pi}{2} + h) \approx 1 \): \[ = -a - b \] 4. **Set the limits equal for continuity**: \[ b = -a - b \] Rearranging gives us Equation (2): \[ a + 2b = 0 \quad \text{(2)} \] ### Step 3: Solve the system of equations From Equation (1): \[ a - b = \frac{\pi}{4} \] From Equation (2): \[ a + 2b = 0 \implies a = -2b \] Substituting \( a = -2b \) into Equation (1): \[ -2b - b = \frac{\pi}{4} \implies -3b = \frac{\pi}{4} \implies b = -\frac{\pi}{12} \] Now substituting back to find \( a \): \[ a = -2\left(-\frac{\pi}{12}\right) = \frac{\pi}{6} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = \frac{\pi}{6}, \quad b = -\frac{\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If 0 le x le pi/2 then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let f: R to R and g:R to R be respectively given by f(x) =|x|+1 and g...

    Text Solution

    |

  4. Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

    Text Solution

    |

  5. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  6. Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

    Text Solution

    |

  7. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  8. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  9. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  10. Let fandg be real valued functions defined on interval (-1,1) such tha...

    Text Solution

    |

  11. In the following, [x] denotes the greatest integer less than or equal ...

    Text Solution

    |

  12. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  13. Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/a...

    Text Solution

    |

  14. lf is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I, th...

    Text Solution

    |

  15. The domain of the derivative of the function f(x)={{:(tan^(-1)x ,if|x|...

    Text Solution

    |

  16. The left hand derivative of f(x)=[x]sin(pix) at x = k, k in Z, is

    Text Solution

    |

  17. Which of the following functions is differentiable at x = 0?

    Text Solution

    |

  18. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  19. If the function g(X) ={{:( ksqrt ( x+1), 0 le x le 3),( mx+2, 3 lt x...

    Text Solution

    |

  20. If f and g are differentiable functions in [0, 1] satisfying f(0)""=""...

    Text Solution

    |

  21. The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greate...

    Text Solution

    |