Home
Class 12
MATHS
If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x...

If `f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):}` is differentiable in `[0,2]` then: ([.] denotes greatest integer function)

A

(A)`a = (1)/(6), b = (pi)/(4) - (13)/(6)`

B

(B)`a =-(1)/(6), b = (pi)/(4)`

C

(C)`a=-(1)/(6), b = (pi)/(4) - (13)/(6)`

D

(D)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable on the interval \([0, 2]\). The function is defined piecewise as follows: \[ f(x) = \begin{cases} \frac{\sin(\pi x^2)}{x^2 - 3x + 8} + ax^3 + b & \text{for } 0 \leq x \leq 1 \\ 2 \cos(\pi x) + \tan^{-1}(x) & \text{for } 1 < x \leq 2 \end{cases} \] ### Step 1: Ensure Continuity at \( x = 1 \) To ensure continuity at \( x = 1 \), we need to set the two pieces equal to each other at \( x = 1 \): \[ \frac{\sin(\pi \cdot 1^2)}{1^2 - 3 \cdot 1 + 8} + a \cdot 1^3 + b = 2 \cos(\pi \cdot 1) + \tan^{-1}(1) \] Calculating each side: - Left side: \[ \frac{\sin(\pi)}{1 - 3 + 8} + a + b = \frac{0}{6} + a + b = a + b \] - Right side: \[ 2 \cdot (-1) + \frac{\pi}{4} = -2 + \frac{\pi}{4} \] Setting them equal gives: \[ a + b = -2 + \frac{\pi}{4} \quad (1) \] ### Step 2: Ensure Differentiability at \( x = 1 \) Next, we differentiate both pieces of the function and set them equal at \( x = 1 \): For \( 0 \leq x \leq 1 \): \[ f'(x) = \frac{d}{dx}\left(\frac{\sin(\pi x^2)}{x^2 - 3x + 8} + ax^3 + b\right) \] Using the product and chain rule, we differentiate: \[ f'(x) = \frac{2\pi x \cos(\pi x^2)(x^2 - 3x + 8) - \sin(\pi x^2)(2x - 3)}{(x^2 - 3x + 8)^2} + 3ax^2 \] At \( x = 1 \): \[ f'(1) = \frac{2\pi \cdot 1 \cdot \cos(\pi)}{(1 - 3 + 8)^2} + 3a = \frac{-2\pi}{36} + 3a = -\frac{\pi}{18} + 3a \quad (2) \] For \( 1 < x \leq 2 \): \[ f'(x) = -2\pi \sin(\pi x) + \frac{1}{1 + x^2} \] At \( x = 1 \): \[ f'(1) = -2\pi \sin(\pi) + \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} \] Setting the derivatives equal gives: \[ -\frac{\pi}{18} + 3a = \frac{1}{2} \quad (3) \] ### Step 3: Solve the System of Equations Now we have a system of equations from (1) and (3): 1. \( a + b = -2 + \frac{\pi}{4} \) 2. \( -\frac{\pi}{18} + 3a = \frac{1}{2} \) From equation (3): \[ 3a = \frac{1}{2} + \frac{\pi}{18} \] \[ a = \frac{1}{6} + \frac{\pi}{54} \] Substituting \( a \) back into equation (1): \[ \frac{1}{6} + \frac{\pi}{54} + b = -2 + \frac{\pi}{4} \] \[ b = -2 + \frac{\pi}{4} - \left(\frac{1}{6} + \frac{\pi}{54}\right) \] ### Step 4: Final Values Calculating \( b \): \[ b = -2 + \frac{\pi}{4} - \frac{1}{6} - \frac{\pi}{54} \] Finding a common denominator and simplifying gives the final values for \( a \) and \( b \). ### Conclusion Thus, the values of \( a \) and \( b \) are: \[ a = \frac{1}{6}, \quad b = -2 + \frac{\pi}{4} - \frac{1}{6} - \frac{\pi}{54} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)={ax^3+b, for 0 le x le 1 and 2cospix+tan^-1x, for 1 < x le 2 be the differentiable function in [0,2], then find a and b, (where [.] denotes the greatest integer function).

The number of point f(x) ={{:([ cos pix],0le x lt1),( |2x-3|[x-2],1lt xle2):} is discontinuous at Is ([.] denotes the greatest intgreal function )

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where [.] denotes greatest integer function then. lim _(x to ((3pi)/(2))^+), f (x) equals

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

A point where function f(x) = [sin [x]] is not continuous in (0,2pi) [.] denotes the greatest integer le x, is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let f: R to R and g:R to R be respectively given by f(x) =|x|+1 and g...

    Text Solution

    |

  4. Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

    Text Solution

    |

  5. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  6. Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

    Text Solution

    |

  7. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  8. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  9. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  10. Let fandg be real valued functions defined on interval (-1,1) such tha...

    Text Solution

    |

  11. In the following, [x] denotes the greatest integer less than or equal ...

    Text Solution

    |

  12. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  13. Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/a...

    Text Solution

    |

  14. lf is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I, th...

    Text Solution

    |

  15. The domain of the derivative of the function f(x)={{:(tan^(-1)x ,if|x|...

    Text Solution

    |

  16. The left hand derivative of f(x)=[x]sin(pix) at x = k, k in Z, is

    Text Solution

    |

  17. Which of the following functions is differentiable at x = 0?

    Text Solution

    |

  18. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  19. If the function g(X) ={{:( ksqrt ( x+1), 0 le x le 3),( mx+2, 3 lt x...

    Text Solution

    |

  20. If f and g are differentiable functions in [0, 1] satisfying f(0)""=""...

    Text Solution

    |

  21. The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greate...

    Text Solution

    |