Home
Class 12
MATHS
Let y(n)(x) = x^(2) + (x^(2))/(1+x^(2))+...

Let `y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x)`. Discuss the continuity of `y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will first analyze the function \( y_n(x) \) and then find the limit as \( n \) approaches infinity to determine \( y(x) \). Finally, we will discuss the continuity of both \( y_n(x) \) and \( y(x) \) at \( x = 0 \). ### Step 1: Write down the expression for \( y_n(x) \) The function is given as: \[ y_n(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \ldots + \frac{x^2}{(1+x^2)^{n-1}} \] ### Step 2: Identify the series as a geometric progression (GP) Notice that the terms after the first can be expressed as a geometric series. The first term \( a = x^2 \) and the common ratio \( r = \frac{1}{1+x^2} \). ### Step 3: Use the formula for the sum of a geometric series The sum of the first \( n \) terms of a geometric series can be calculated using the formula: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] Substituting \( a = x^2 \) and \( r = \frac{1}{1+x^2} \): \[ y_n(x) = \frac{x^2 \left(1 - \left(\frac{1}{1+x^2}\right)^{n}\right)}{1 - \frac{1}{1+x^2}} \] ### Step 4: Simplify the expression The denominator simplifies to: \[ 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} \] Thus, we have: \[ y_n(x) = \frac{x^2 \left(1 - \left(\frac{1}{1+x^2}\right)^{n}\right)}{\frac{x^2}{1+x^2}} = (1+x^2) \left(1 - \left(\frac{1}{1+x^2}\right)^{n}\right) \] ### Step 5: Find the limit as \( n \to \infty \) Now, we need to find \( y(x) = \lim_{n \to \infty} y_n(x) \): \[ y(x) = (1+x^2) \left(1 - \lim_{n \to \infty} \left(\frac{1}{1+x^2}\right)^{n}\right) \] Since \( \left(\frac{1}{1+x^2}\right)^{n} \) approaches 0 as \( n \to \infty \) for \( x \neq 0 \): \[ y(x) = (1+x^2)(1 - 0) = 1 + x^2 \] ### Step 6: Analyze continuity at \( x = 0 \) 1. **For \( y_n(x) \)**: - \( y_n(0) = 0^2 + \frac{0^2}{1+0^2} + \ldots + \frac{0^2}{(1+0^2)^{n-1}} = 0 \) - Since \( y_n(x) \) is a polynomial function, it is continuous for all \( x \), including \( x = 0 \). 2. **For \( y(x) \)**: - \( y(0) = 1 + 0^2 = 1 \) - \( y(x) \) is also a polynomial function, hence continuous for all \( x \). ### Conclusion - \( y_n(x) \) is continuous at \( x = 0 \) for all \( n \). - \( y(x) \) is continuous at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

f(x)=(lim)_(n->oo)(sin(pix/2))^(2n) for x >0,x!=1 ,and f(1)=0. Discuss the continuity at x=1.

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4) then :

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is