Home
Class 12
MATHS
Consider f(x) = {{:((8^(x) - 4^(x) - 2^(...

Consider `f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):}` Then, f(0) so that f(x) is continuous at x = 0, is

A

log 4

B

log 2

C

(log 4) (log 2)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit and right-hand limit at \( x = 0 \) are equal to \( f(0) \). ### Step 1: Define the function The function is given as: \[ f(x) = \begin{cases} \frac{8^x - 4^x - 2^x + 1}{x^2} & \text{if } x > 0 \\ e^x \sin x + \pi x + k \log 4 & \text{if } x < 0 \end{cases} \] ### Step 2: Find the right-hand limit as \( x \to 0^+ \) We calculate the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{8^x - 4^x - 2^x + 1}{x^2} \] Substituting \( x = 0 \) directly gives us \( \frac{0}{0} \), which is an indeterminate form. We will apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and the denominator: - The derivative of \( 8^x \) is \( 8^x \log 8 \) - The derivative of \( 4^x \) is \( 4^x \log 4 \) - The derivative of \( 2^x \) is \( 2^x \log 2 \) - The derivative of \( 1 \) is \( 0 \) - The derivative of \( x^2 \) is \( 2x \) Thus, we have: \[ \lim_{x \to 0^+} \frac{8^x \log 8 - 4^x \log 4 - 2^x \log 2}{2x} \] ### Step 4: Apply L'Hôpital's Rule again Substituting \( x = 0 \) again gives us \( \frac{0}{0} \). We apply L'Hôpital's Rule once more: - The derivative of the numerator is: \[ 8^x (\log 8)^2 - 4^x (\log 4)^2 - 2^x (\log 2)^2 \] - The derivative of the denominator is \( 2 \). Now we have: \[ \lim_{x \to 0^+} \frac{8^x (\log 8)^2 - 4^x (\log 4)^2 - 2^x (\log 2)^2}{2} \] ### Step 5: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): \[ = \frac{1 \cdot (\log 8)^2 - 1 \cdot (\log 4)^2 - 1 \cdot (\log 2)^2}{2} \] This simplifies to: \[ = \frac{(\log 8)^2 - (\log 4)^2 - (\log 2)^2}{2} \] ### Step 6: Simplify the expression Using the properties of logarithms: \[ \log 8 = 3 \log 2, \quad \log 4 = 2 \log 2 \] Thus: \[ (\log 8)^2 = (3 \log 2)^2 = 9 (\log 2)^2 \] \[ (\log 4)^2 = (2 \log 2)^2 = 4 (\log 2)^2 \] So we have: \[ = \frac{9 (\log 2)^2 - 4 (\log 2)^2 - (\log 2)^2}{2} = \frac{(9 - 4 - 1)(\log 2)^2}{2} = \frac{4 (\log 2)^2}{2} = 2 (\log 2)^2 \] ### Step 7: Find \( f(0) \) For continuity at \( x = 0 \): \[ f(0) = \lim_{x \to 0^+} f(x) = 2 (\log 2)^2 \] ### Conclusion Thus, the value of \( f(0) \) so that \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{2 (\log 2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.

If f(x)={:{(1+sin x", " 0 le x lt pi//2),(" "1 ", " x lt0):} then show that f'(0) does not exist.

Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x 0 Determine the value of a so that f(x) is continuous at x=0.

If f(x)=(sin3x)/x,w h e nx!=0, f(x)= 1,w h e n x=0 Find whether f(x) is continuous at x=0

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):}, where [x] d...

    Text Solution

    |

  2. Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^...

    Text Solution

    |

  3. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  4. f(x)={cos^(-1){cotx),x<pi/2pi[x]-1,x >pi/2 where [dot] represents the...

    Text Solution

    |

  5. Let f:[0,1]vec[0,1] be a continuous function. Then prove that f(x)=x f...

    Text Solution

    |

  6. If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2), then (fog)(x) is discont...

    Text Solution

    |

  7. Let y(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+.........

    Text Solution

    |

  8. If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0 ((2a)^x-xlog(2a)-1)/(x^2), x...

    Text Solution

    |

  9. Find dy/dx if y=(pi)/2-sinx

    Text Solution

    |

  10. Find dy/dx if y= sin2x - x^3

    Text Solution

    |

  11. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  12. If f(x) = {{:(A+Bx^(2)",",x lt 1),(3Ax - B+2",",x ge 1):}, then A and ...

    Text Solution

    |

  13. If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):}, then

    Text Solution

    |

  14. If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):}, where [.] an...

    Text Solution

    |

  15. Find dy/dx if y= x sinx

    Text Solution

    |

  16. Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for...

    Text Solution

    |

  17. Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists an...

    Text Solution

    |

  18. A derivable function f : R^(+) rarr R satisfies the condition f(x) - f...

    Text Solution

    |

  19. If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x), then f(x) is, (given f(...

    Text Solution

    |

  20. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |