Home
Class 12
MATHS
Let f(x) = {{:((a(1-x sin x)+b cos x + 5...

Let `f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):}` If f is continuous at x = 0, then (a + b + c + d) is

A

(a)5

B

(b)-5

C

(c)log 3 - 5

D

(d)5 - log 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} & \text{for } x < 0 \\ 3 & \text{for } x = 0 \\ \left(1 + \frac{cx + dx^3}{x^2}\right)^{\frac{1}{x}} & \text{for } x > 0 \end{cases} \] ### Step 1: Find the limit of \( f(x) \) as \( x \) approaches 0 from the left (\( x \to 0^- \)) We need to compute: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} \] As \( x \to 0 \), we know that \( \sin x \to 0 \) and \( \cos x \to 1 \). Thus, we can simplify: \[ 1 - x \sin x \to 1 \quad \text{and} \quad \cos x \to 1 \] So, \[ \lim_{x \to 0^-} f(x) = \frac{a(1) + b(1) + 5}{0} = \frac{a + b + 5}{0} \] This limit tends to infinity unless \( a + b + 5 = 0 \). Therefore, we set: \[ a + b + 5 = 0 \quad \text{(Equation 1)} \] ### Step 2: Find the limit of \( f(x) \) as \( x \) approaches 0 from the right (\( x \to 0^+ \)) Next, we compute: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(1 + \frac{cx + dx^3}{x^2}\right)^{\frac{1}{x}} \] This can be rewritten as: \[ \lim_{x \to 0^+} \left(1 + \frac{c}{x} + d x\right)^{\frac{1}{x}} \] For the limit to exist and be finite, \( c \) must equal 0. Thus, we have: \[ \lim_{x \to 0^+} \left(1 + d x\right)^{\frac{1}{x}} = e^{\lim_{x \to 0^+} d x} = e^0 = 1 \] ### Step 3: Set the limits equal for continuity at \( x = 0 \) Since \( f(0) = 3 \), we set the limits equal: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] From the left, we have: \[ \frac{a + b + 5}{0} \to \infty \quad \text{(if } a + b + 5 \neq 0\text{)} \] From the right, we have: \[ 1 = 3 \quad \text{(not possible)} \] Thus, we need to ensure that both limits equal 3. This leads us to: \[ \lim_{x \to 0^-} f(x) = 3 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = 3 \] ### Step 4: Solve the equations From Equation 1: \[ a + b + 5 = 0 \implies a + b = -5 \quad \text{(Equation 2)} \] Now, we need to find \( d \) such that: \[ \lim_{x \to 0^+} f(x) = 3 \] From our earlier analysis, we know: \[ e^{d \cdot 0} = 1 \implies d = 0 \] ### Step 5: Substitute \( c \) and \( d \) Since \( c = 0 \) and \( d = 0 \), we substitute back into our equations: 1. From Equation 2: \( a + b = -5 \) 2. We need to find \( a + b + c + d = -5 + 0 + 0 = -5 \) ### Final Answer Thus, \( a + b + c + d = -5 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

If f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2))sin^(-1)(1-{x}))/(sqrt(2) ({x} - {x}^(3)))",",x gt 0),(k",",x = 0),((A sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))",",x lt 0):} is continuous at x = 0, then the value of sin^(2) k + cos^(2) ((Api)/(sqrt(2))) , is..... (where {.} denotes fractional part of x).

Let f (x)= {((1+ax )^(1//x), x lt 0),( ((x+c)^(1//3)-1)/((x+1)^(1//2) -1), x gt 0):}, is continous at x=0, then 3 (e ^(a)+b+c) is equal to:

If the function f(x) defined as f(x) defined as f(x)={3,x=0(1+(a x+b x^3)/(x^2))^(1/x),x >0 is continuous at x=0, then a=0 b. b=e^3 c. a=1 d. b=(log)_e3

Let the function f(x)=x^(2)sin((1)/(x)), AA x ne 0 is continuous at x = 0. Then, the vaue of the function at x = 0 is

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):}, where [x] d...

    Text Solution

    |

  2. Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^...

    Text Solution

    |

  3. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  4. f(x)={cos^(-1){cotx),x<pi/2pi[x]-1,x >pi/2 where [dot] represents the...

    Text Solution

    |

  5. Let f:[0,1]vec[0,1] be a continuous function. Then prove that f(x)=x f...

    Text Solution

    |

  6. If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2), then (fog)(x) is discont...

    Text Solution

    |

  7. Let y(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+.........

    Text Solution

    |

  8. If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0 ((2a)^x-xlog(2a)-1)/(x^2), x...

    Text Solution

    |

  9. Find dy/dx if y=(pi)/2-sinx

    Text Solution

    |

  10. Find dy/dx if y= sin2x - x^3

    Text Solution

    |

  11. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  12. If f(x) = {{:(A+Bx^(2)",",x lt 1),(3Ax - B+2",",x ge 1):}, then A and ...

    Text Solution

    |

  13. If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):}, then

    Text Solution

    |

  14. If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):}, where [.] an...

    Text Solution

    |

  15. Find dy/dx if y= x sinx

    Text Solution

    |

  16. Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for...

    Text Solution

    |

  17. Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists an...

    Text Solution

    |

  18. A derivable function f : R^(+) rarr R satisfies the condition f(x) - f...

    Text Solution

    |

  19. If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x), then f(x) is, (given f(...

    Text Solution

    |

  20. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |