Home
Class 12
MATHS
If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0...

If `g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0` `((2a)^x-xlog(2a)-1)/(x^2), x >0` (where a > 0) then find a and `g(0)` so that `g(x)` is continuous at `x=0.`

A

(a)`(-1)/(sqrt(2))`

B

(b)`(1)/(sqrt(2))`

C

(c)2

D

(d)-2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a \) and \( g(0) \) such that the function \( g(x) \) is continuous at \( x = 0 \), we need to analyze the limits of \( g(x) \) as \( x \) approaches 0 from both sides. ### Step 1: Define the function for \( x < 0 \) and \( x > 0 \) For \( x < 0 \): \[ g(x) = \frac{1 - a^x + x a^x \log a}{x^2 a^x} \] For \( x > 0 \): \[ g(x) = \frac{(2a)^x - x \log(2a) - 1}{x^2} \] ### Step 2: Find the limit as \( x \to 0 \) from the left We need to compute: \[ \lim_{x \to 0^-} g(x) = \lim_{x \to 0} \frac{1 - a^x + x a^x \log a}{x^2 a^x} \] As \( x \to 0 \): - \( a^x \to 1 \) - \( 1 - a^x \to 1 - 1 = 0 \) - \( x a^x \log a \to 0 \) This gives us a \( \frac{0}{0} \) form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - Numerator: \( \frac{d}{dx}(1 - a^x + x a^x \log a) = -a^x \log a + a^x \log a + x a^x \frac{d}{dx}(\log a) = -a^x \log a + a^x \log a + x a^x \log a \) - Denominator: \( \frac{d}{dx}(x^2 a^x) = 2x a^x + x^2 a^x \log a \) So we have: \[ \lim_{x \to 0^-} g(x) = \lim_{x \to 0} \frac{-a^x \log a + a^x \log a + x a^x \log a}{2x a^x + x^2 a^x \log a} \] ### Step 4: Simplify the limit This simplifies to: \[ \lim_{x \to 0} \frac{x a^x \log a}{2x a^x + x^2 a^x \log a} \] Factoring out \( x a^x \): \[ = \lim_{x \to 0} \frac{\log a}{2 + x \log a} \] As \( x \to 0 \), this becomes: \[ \frac{\log a}{2} \] ### Step 5: Find the limit as \( x \to 0 \) from the right Now compute: \[ \lim_{x \to 0^+} g(x) = \lim_{x \to 0} \frac{(2a)^x - x \log(2a) - 1}{x^2} \] As \( x \to 0 \): - \( (2a)^x \to 1 \) - \( - x \log(2a) \to 0 \) This also gives a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 6: Apply L'Hôpital's Rule to the right limit Differentiate the numerator and denominator: - Numerator: \( \frac{d}{dx}((2a)^x - x \log(2a) - 1) = (2a)^x \log(2a) - \log(2a) \) - Denominator: \( \frac{d}{dx}(x^2) = 2x \) Thus: \[ \lim_{x \to 0^+} g(x) = \lim_{x \to 0} \frac{(2a)^x \log(2a) - \log(2a)}{2x} \] This simplifies to: \[ = \lim_{x \to 0} \frac{\log(2a)}{2} \] ### Step 7: Set the limits equal for continuity For \( g(x) \) to be continuous at \( x = 0 \): \[ \frac{\log a}{2} = \frac{\log(2a)}{2} \] This implies: \[ \log a = \log(2a) \] \[ \log a = \log 2 + \log a \] Thus: \[ 0 = \log 2 \quad \Rightarrow \quad a = 2 \] ### Step 8: Find \( g(0) \) Now substitute \( a = 2 \) into either limit: \[ g(0) = \frac{\log 2}{2} = \frac{\log(4)}{2} = 1 \] ### Final Answer Thus, \( a = 2 \) and \( g(0) = 1 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Find f(0) , so that f(x)=x/(1-sqrt(1-x)) becomes continuous at x=0 .

Let g(x) be a polynomial of degree one and f(x) is defined by f(x)={g(x) , xleq0 and ((1+x)/(2+x))^(1/x) , xgt0 } Find g(x) such that f(x) is continuous and f'(1)=f(-1)

If f.g is continuous at x = 0 , then f and g are separately continuous at x = 0 .

If f.g is continuous at x = 0 , then f and g are separately continuous at x = 0 .

If f'(x) = g(x) (x-a)^2 , where g(a) != 0 and g is continuous at x = a, then :

Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) g(x), x ne 0 If g(0)=g'(0)=0 and f(x) is continuous at x=0, then f'(0) is

If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,where ac !=0, then prove that f(x)g(x)=0 has at least two real roots.

Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=-g(x), x 0 If f(x) is continuous satisfying f'(1)=f(-1) , then g(x) is

If f(x) = 1//x, g(x) = sqrt(x) for all x in (0,oo) , then find (gof)(x).

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2), then (fog)(x) is discont...

    Text Solution

    |

  2. Let y(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+.........

    Text Solution

    |

  3. If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0 ((2a)^x-xlog(2a)-1)/(x^2), x...

    Text Solution

    |

  4. Find dy/dx if y=(pi)/2-sinx

    Text Solution

    |

  5. Find dy/dx if y= sin2x - x^3

    Text Solution

    |

  6. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  7. If f(x) = {{:(A+Bx^(2)",",x lt 1),(3Ax - B+2",",x ge 1):}, then A and ...

    Text Solution

    |

  8. If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):}, then

    Text Solution

    |

  9. If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):}, where [.] an...

    Text Solution

    |

  10. Find dy/dx if y= x sinx

    Text Solution

    |

  11. Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for...

    Text Solution

    |

  12. Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists an...

    Text Solution

    |

  13. A derivable function f : R^(+) rarr R satisfies the condition f(x) - f...

    Text Solution

    |

  14. If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x), then f(x) is, (given f(...

    Text Solution

    |

  15. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |

  16. For let h(x)={1/q if x=p/q and 0 if x is irrational where p & q ...

    Text Solution

    |

  17. Let f(x) = (g(x))/(h(x)), where g and h are continuous functions on th...

    Text Solution

    |

  18. Find dy/dx if y=2x^7

    Text Solution

    |

  19. if f(x) =(x-e^(x)+ cos 2x)/(x^(2)),xne0 , is continuous at x=0 , t...

    Text Solution

    |

  20. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |