Home
Class 12
MATHS
If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0...

If `f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):}`, then

A

A. `f'(1^(+)) = 0`

B

B. `f'(1^(-)) = 0`

C

C. `f'(1^(-)) = - 1`

D

D. f(x) is differentiable at x = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} |x - 1| \cdot ([x] - x) & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases} \] Where \([x]\) denotes the greatest integer function (or floor function). ### Step 1: Analyze the function for \( x > 1 \) When \( x > 1 \): - The modulus \( |x - 1| = x - 1 \). - The greatest integer function \([x]\) will be \( [x] = n \) where \( n \) is the largest integer less than or equal to \( x \). Thus, \([x] - x = n - x\). Now, we can express \( f(x) \) as: \[ f(x) = (x - 1)([x] - x) = (x - 1)(n - x) \] Since \( n = [x] \) is an integer, we can write: \[ f(x) = (x - 1)(n - x) = -(x - 1)(x - n) \] ### Step 2: Analyze the function for \( x < 1 \) When \( x < 1 \): - The modulus \( |x - 1| = -(x - 1) = 1 - x \). - The greatest integer function \([x]\) will be \( [x] = -1 \) since \( x \) is less than 1. Thus, we can express \( f(x) \) as: \[ f(x) = (1 - x)(-1 - x) = -(1 - x)(x + 1) \] This simplifies to: \[ f(x) = -(x^2 + x - 1) \] ### Step 3: Evaluate the function at \( x = 1 \) At \( x = 1 \): \[ f(1) = 0 \] ### Step 4: Find the derivative \( f'(x) \) #### Case 1: For \( x > 1 \) Using the expression derived: \[ f(x) = -(x - 1)(x - n) \] To find \( f'(x) \), we differentiate: \[ f'(x) = -[(x - n) + (x - 1)(-1)] = -[(x - n) - (x - 1)] = -[1 - n] \] #### Case 2: For \( x < 1 \) Using the expression derived: \[ f(x) = -(x^2 + x - 1) \] To find \( f'(x) \), we differentiate: \[ f'(x) = -[2x + 1] \] ### Step 5: Evaluate \( f'(1^+) \) and \( f'(1^-) \) 1. **For \( x > 1 \)**: - As \( x \) approaches 1 from the right, \( n = 1 \) (since \( [x] = 1 \)). - Thus, \( f'(1^+) = -[1 - 1] = 0 \). 2. **For \( x < 1 \)**: - As \( x \) approaches 1 from the left, we use \( f'(x) = -[2x + 1] \). - Therefore, \( f'(1^-) = -[2(1) + 1] = -3 \). ### Step 6: Check differentiability at \( x = 1 \) For \( f(x) \) to be differentiable at \( x = 1 \), we need: \[ f'(1^+) = f'(1^-) \] Since \( f'(1^+) = 0 \) and \( f'(1^-) = -3 \), they are not equal. Thus, \( f(x) \) is not differentiable at \( x = 1 \). ### Conclusion The correct answer is option A, which states that \( f'(1^+) = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = 0 the function f(x) is

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

If f(x)={((sqrt(g(x))-1)/(sqrtx-1)"," , x ne 1),(1",",x=1):} and g'(1)=2, g(1)=1, then lim_(xrarr1)f(x) is equal to

If f(x)={(x^2+1", "x ne 1),(" "3 ", "x=1):} , then check whether the function f(x) is continuous or discontinuous at x=1

Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0", " x= 0):},

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Let f(x)={1/(|x|)\ \ \ \ \ for\ |x|geq1a x^2+b\ \ \ \ \ \ \ \ for\ |x|...

    Text Solution

    |

  2. If f(x) = {{:(A+Bx^(2)",",x lt 1),(3Ax - B+2",",x ge 1):}, then A and ...

    Text Solution

    |

  3. If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):}, then

    Text Solution

    |

  4. If f(x) = {{:([cos pi x]",",x le 1),(2{x}-1",",x gt 1):}, where [.] an...

    Text Solution

    |

  5. Find dy/dx if y= x sinx

    Text Solution

    |

  6. Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for...

    Text Solution

    |

  7. Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists an...

    Text Solution

    |

  8. A derivable function f : R^(+) rarr R satisfies the condition f(x) - f...

    Text Solution

    |

  9. If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x), then f(x) is, (given f(...

    Text Solution

    |

  10. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |

  11. For let h(x)={1/q if x=p/q and 0 if x is irrational where p & q ...

    Text Solution

    |

  12. Let f(x) = (g(x))/(h(x)), where g and h are continuous functions on th...

    Text Solution

    |

  13. Find dy/dx if y=2x^7

    Text Solution

    |

  14. if f(x) =(x-e^(x)+ cos 2x)/(x^(2)),xne0 , is continuous at x=0 , t...

    Text Solution

    |

  15. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  16. Let f(x) = {{:((2^(x)+2^(3-x) - 6)/(sqrt(2^(-x))-2^(1-x))",","if",x gt...

    Text Solution

    |

  17. Let [x] denote the integral part of x in R and g(x) = x- [x]. Let f(x...

    Text Solution

    |

  18. Let f be a differentiable function on the open interval(a, b). Which o...

    Text Solution

    |

  19. Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) i...

    Text Solution

    |

  20. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |