Home
Class 12
MATHS
A derivable function f : R^(+) rarr R sa...

A derivable function `f : R^(+) rarr R` satisfies the condition `f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+)`. If g denotes the derivative of f, then the value of the sum `sum_(n=1)^(100) g((1)/(n))` is

A

(a)5050

B

(b)5510

C

(c)5150

D

(d)1550

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the condition given for the function \( f \): ### Step 1: Understand the given inequality The condition states: \[ f(x) - f(y) \geq \log\left(\frac{x}{y}\right) + (x - y) \quad \forall x, y \in \mathbb{R}^+ \] ### Step 2: Set \( y = 1 \) Let’s set \( y = 1 \): \[ f(x) - f(1) \geq \log(x) + (x - 1) \] ### Step 3: Rearranging the inequality This can be rearranged to express \( f(x) \): \[ f(x) \geq f(1) + \log(x) + (x - 1) \] ### Step 4: Differentiate both sides Now, we differentiate both sides with respect to \( x \). The left-hand side gives us \( f'(x) \) (denote it as \( g(x) \)), and the right-hand side gives: \[ g(x) \geq \frac{1}{x} + 1 \] Thus, we have: \[ g(x) \geq \frac{1 + x}{x} = \frac{x + 1}{x} \] ### Step 5: Evaluate \( g\left(\frac{1}{n}\right) \) Now, substituting \( x = \frac{1}{n} \): \[ g\left(\frac{1}{n}\right) \geq \frac{\frac{1}{n} + 1}{\frac{1}{n}} = n + 1 \] ### Step 6: Sum up \( g\left(\frac{1}{n}\right) \) from 1 to 100 We need to calculate: \[ \sum_{n=1}^{100} g\left(\frac{1}{n}\right) \geq \sum_{n=1}^{100} (n + 1) \] This simplifies to: \[ \sum_{n=1}^{100} g\left(\frac{1}{n}\right) \geq \sum_{n=1}^{100} n + \sum_{n=1}^{100} 1 \] ### Step 7: Calculate the sums The first sum is the sum of the first 100 natural numbers: \[ \sum_{n=1}^{100} n = \frac{100 \cdot 101}{2} = 5050 \] The second sum is simply: \[ \sum_{n=1}^{100} 1 = 100 \] ### Step 8: Combine the results Thus, we have: \[ \sum_{n=1}^{100} g\left(\frac{1}{n}\right) \geq 5050 + 100 = 5150 \] ### Step 9: Conclusion Since \( g\left(\frac{1}{n}\right) \) is greater than or equal to \( n + 1 \), the sum \( \sum_{n=1}^{100} g\left(\frac{1}{n}\right) \) is at least 5150. Thus, the value of the sum is: \[ \sum_{n=1}^{100} g\left(\frac{1}{n}\right) = 5150 \] ### Final Answer The value of the sum \( \sum_{n=1}^{100} g\left(\frac{1}{n}\right) \) is \( 5150 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

Let f : R^(+) rarr R satisfies the functional equation f(xy) = e^(xy - x - y) {e^(y) f(x) + e^(x) f(y)}, AA x, y in R^(+) . If f'(1) = e, determine f(x).

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

If f:RtoR is a function which satisfies the condition f(x)+f(y)=f((x+y)/(1+xy)) for all x, y in R except xy=-1 , then range of f(x) is

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Suppose a function f(x) satisfies the following conditions f (x+y) =(f(x) +f(y))/(f +f(x) f(y))' AA x , y in R and f '(0)=1 Also -1lt f (x) lt 1, AA x in R The value of the limit l t_(xto oo) (f(x))^(x) is:

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for...

    Text Solution

    |

  2. Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists an...

    Text Solution

    |

  3. A derivable function f : R^(+) rarr R satisfies the condition f(x) - f...

    Text Solution

    |

  4. If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x), then f(x) is, (given f(...

    Text Solution

    |

  5. Let f : (0, oo) rarr R be a continuous function such that f(x) = int(0...

    Text Solution

    |

  6. For let h(x)={1/q if x=p/q and 0 if x is irrational where p & q ...

    Text Solution

    |

  7. Let f(x) = (g(x))/(h(x)), where g and h are continuous functions on th...

    Text Solution

    |

  8. Find dy/dx if y=2x^7

    Text Solution

    |

  9. if f(x) =(x-e^(x)+ cos 2x)/(x^(2)),xne0 , is continuous at x=0 , t...

    Text Solution

    |

  10. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  11. Let f(x) = {{:((2^(x)+2^(3-x) - 6)/(sqrt(2^(-x))-2^(1-x))",","if",x gt...

    Text Solution

    |

  12. Let [x] denote the integral part of x in R and g(x) = x- [x]. Let f(x...

    Text Solution

    |

  13. Let f be a differentiable function on the open interval(a, b). Which o...

    Text Solution

    |

  14. Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) i...

    Text Solution

    |

  15. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  16. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  17. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  18. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  19. The function f(x) = (x^(2) - 1)|x^(2)-6x + 5|+cos|x| is not differenti...

    Text Solution

    |

  20. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |