Home
Class 12
MATHS
Let f(x) = {{:((2^(x)+2^(3-x) - 6)/(sqrt...

Let `f(x) = {{:((2^(x)+2^(3-x) - 6)/(sqrt(2^(-x))-2^(1-x))",","if",x gt 2),((x^(2) - 4)/(x - sqrt(3x - 2))",","if",x lt 2):}`,then

A

(a)`f(2) = 8 rArr f` is continuous at x = 2

B

(b)`f(2) = 16 rArr f` is continuous at x = 2

C

(c)`f(2^(-)) ne f(2^(+)) rArr f` is discontinuous

D

(d)f has a removable discontinuity at x = 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function \( f(x) \) defined piecewise and determine its continuity at \( x = 2 \). The function is defined as follows: \[ f(x) = \begin{cases} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}} & \text{if } x > 2 \\ \frac{x^2 - 4}{x - \sqrt{3x - 2}} & \text{if } x < 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit as \( x \) approaches 2 We need to find the left-hand limit \( \lim_{x \to 2^-} f(x) \). For \( x < 2 \): \[ f(x) = \frac{x^2 - 4}{x - \sqrt{3x - 2}} \] Substituting \( x = 2 \): \[ f(2) = \frac{2^2 - 4}{2 - \sqrt{3(2) - 2}} = \frac{0}{0} \] This is an indeterminate form, so we will simplify it. ### Step 2: Simplify the Left-Hand Limit We can factor the numerator: \[ x^2 - 4 = (x - 2)(x + 2) \] Now we rewrite the limit: \[ \lim_{x \to 2^-} \frac{(x - 2)(x + 2)}{x - \sqrt{3x - 2}} \] Next, we rationalize the denominator: \[ x - \sqrt{3x - 2} = \frac{(x - \sqrt{3x - 2})(x + \sqrt{3x - 2})}{x + \sqrt{3x - 2}} = \frac{x^2 - (3x - 2)}{x + \sqrt{3x - 2}} = \frac{-2x + 2}{x + \sqrt{3x - 2}} = \frac{2(1 - x)}{x + \sqrt{3x - 2}} \] Substituting this back into the limit: \[ \lim_{x \to 2^-} \frac{(x - 2)(x + 2)}{\frac{2(1 - x)}{x + \sqrt{3x - 2}}} \] This simplifies to: \[ \lim_{x \to 2^-} \frac{(x - 2)(x + 2)(x + \sqrt{3x - 2})}{2(1 - x)} \] ### Step 3: Evaluate the Limit As \( x \to 2 \): - The term \( (x - 2) \) approaches \( 0 \). - The term \( (1 - x) \) also approaches \( 0 \). Thus, we can cancel \( (x - 2) \) and \( (1 - x) \) (which is \( -(x - 2) \)): \[ \lim_{x \to 2^-} \frac{-(x + 2)(x + \sqrt{3x - 2})}{2} \] Substituting \( x = 2 \): \[ = \frac{-(2 + 2)(2 + \sqrt{4 - 2})}{2} = \frac{-4 \cdot 3}{2} = -6 \] ### Step 4: Calculate the Right-Hand Limit as \( x \) approaches 2 Now, we find the right-hand limit \( \lim_{x \to 2^+} f(x) \). For \( x > 2 \): \[ f(x) = \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}} \] Substituting \( x = 2 \): \[ f(2) = \frac{2^2 + 2^{3-2} - 6}{\sqrt{2^{-2}} - 2^{1-2}} = \frac{4 + 2 - 6}{\sqrt{\frac{1}{4}} - \frac{1}{2}} = \frac{0}{0} \] This is again an indeterminate form, so we apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - Numerator: \( \frac{d}{dx}(2^x + 2^{3-x} - 6) = 2^x \ln(2) - 2^{3-x} \ln(2) \) - Denominator: \( \frac{d}{dx}(\sqrt{2^{-x}} - 2^{1-x}) = -\frac{1}{2} \cdot 2^{-x} \ln(2) + 2^{1-x} \ln(2) \) Now we compute the limit: \[ \lim_{x \to 2^+} \frac{2^x \ln(2) - 2^{3-x} \ln(2)}{-\frac{1}{2} \cdot 2^{-x} \ln(2) + 2^{1-x} \ln(2)} \] Evaluating this limit gives us a value of \( 8 \). ### Step 6: Conclusion Since the left-hand limit \( \lim_{x \to 2^-} f(x) = -6 \) and the right-hand limit \( \lim_{x \to 2^+} f(x) = 8 \) are not equal, the function \( f(x) \) is discontinuous at \( x = 2 \). ### Final Answer The function \( f(x) \) is discontinuous at \( x = 2 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

Let f (x)= {{:(((e ^(1/(x-2))-3))/((1)/(3 ^(x-2))+1), x gt 2), ((b sin{-x})/({-x}), x lt 2),(c, x=2):}, where {.} denotes fraction part function, is continuous at x=2, then b+c=

Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

If f:R to R is defined as: f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if",-2 lt x lt 2),(2x,"if",x lt -2):} then evaluate the following: (i) f(1) (ii) f(5) (iii) f(-3)

IF sqrt(9x^2 + 6x +1) lt (2-x) then

Solve sqrt((x-3)(2-x)) lt sqrt(4x^(2)+12x+11) .

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. if f(x) =(x-e^(x)+ cos 2x)/(x^(2)),xne0 , is continuous at x=0 , t...

    Text Solution

    |

  2. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  3. Let f(x) = {{:((2^(x)+2^(3-x) - 6)/(sqrt(2^(-x))-2^(1-x))",","if",x gt...

    Text Solution

    |

  4. Let [x] denote the integral part of x in R and g(x) = x- [x]. Let f(x...

    Text Solution

    |

  5. Let f be a differentiable function on the open interval(a, b). Which o...

    Text Solution

    |

  6. Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) i...

    Text Solution

    |

  7. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  8. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  9. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  10. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2)-6x + 5|+cos|x| is not differenti...

    Text Solution

    |

  12. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |

  13. The function g(x) = {{:(x+b",",x lt 0),(cos x",",x ge 0):} can be made...

    Text Solution

    |

  14. The graph of function f contains the point P(1, 2) and Q(s, r). The e...

    Text Solution

    |

  15. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  16. If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0, then

    Text Solution

    |

  17. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Let f(x) be continuous and differentiable function for all reals and f...

    Text Solution

    |

  20. Let [x] be the greatest integer function, then f(x) = ("sin"(1)/(4)pi ...

    Text Solution

    |