Home
Class 12
MATHS
Consider f(x)=[[2(sinx-sin^3x)+|sinx-si...

Consider `f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx-sin^3x|]], x != pi/2` for `x in (0,pi), f(pi/2) = 3` where [ ] denotes the greatest integer function then,

A

f is continuous and differentiable at `x = pi//2`

B

f is continuous but not differentiable at `x = pi//2`

C

f is neither continuous nor differentiable at `x = pi//2`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = \left\lfloor \frac{2(\sin x - \sin^3 x) + |\sin x - \sin^3 x|}{2(\sin x - \sin^3 x) - |\sin x - \sin^3 x|} \right\rfloor \] for \( x \neq \frac{\pi}{2} \) and \( f\left(\frac{\pi}{2}\right) = 3 \). ### Step 1: Analyze the expression inside the function First, we simplify the expression \( \sin x - \sin^3 x \). \[ \sin x - \sin^3 x = \sin x(1 - \sin^2 x) = \sin x \cos^2 x \] ### Step 2: Determine the sign of \( \sin x - \sin^3 x \) Since \( x \) is in the interval \( (0, \pi) \), \( \sin x \) is positive for \( x \in (0, \pi) \), and thus \( \sin x - \sin^3 x \) is also positive for \( x \neq \frac{\pi}{2} \). ### Step 3: Simplify the absolute value Given that \( \sin x - \sin^3 x > 0 \), we have: \[ |\sin x - \sin^3 x| = \sin x - \sin^3 x \] ### Step 4: Substitute back into the function Now substituting back into \( f(x) \): \[ f(x) = \left\lfloor \frac{2(\sin x - \sin^3 x) + (\sin x - \sin^3 x)}{2(\sin x - \sin^3 x) - (\sin x - \sin^3 x)} \right\rfloor \] This simplifies to: \[ f(x) = \left\lfloor \frac{3(\sin x - \sin^3 x)}{\sin x - \sin^3 x} \right\rfloor \] ### Step 5: Cancel the common terms Since \( \sin x - \sin^3 x \neq 0 \) for \( x \neq \frac{\pi}{2} \): \[ f(x) = \left\lfloor 3 \right\rfloor = 3 \] ### Step 6: Conclusion for \( x \neq \frac{\pi}{2} \) Thus, for all \( x \in (0, \pi) \) except \( x = \frac{\pi}{2} \): \[ f(x) = 3 \] ### Step 7: Check the value at \( x = \frac{\pi}{2} \) We are given that \( f\left(\frac{\pi}{2}\right) = 3 \). Therefore, \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). ### Step 8: Check differentiability Since \( f(x) = 3 \) for all \( x \) in the interval and is constant, it is differentiable everywhere in that interval, including at \( x = \frac{\pi}{2} \). ### Final Answer Thus, we conclude that \( f(x) \) is continuous and differentiable at \( x = \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|9 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) i...

    Text Solution

    |

  2. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  3. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  4. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  5. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  6. The function f(x) = (x^(2) - 1)|x^(2)-6x + 5|+cos|x| is not differenti...

    Text Solution

    |

  7. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |

  8. The function g(x) = {{:(x+b",",x lt 0),(cos x",",x ge 0):} can be made...

    Text Solution

    |

  9. The graph of function f contains the point P(1, 2) and Q(s, r). The e...

    Text Solution

    |

  10. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  11. If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0, then

    Text Solution

    |

  12. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let f(x) be continuous and differentiable function for all reals and f...

    Text Solution

    |

  15. Let [x] be the greatest integer function, then f(x) = ("sin"(1)/(4)pi ...

    Text Solution

    |

  16. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  17. If both f(x) & g(x) are differentiable functions at x=x0then the fun...

    Text Solution

    |

  18. Number of points of non-differentiability of the function g(x) = [x^2...

    Text Solution

    |

  19. Find dy/dx if y= xtanx

    Text Solution

    |

  20. If f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x) exists ...

    Text Solution

    |