Home
Class 12
MATHS
If y= 2x^6 + sin 3x then dy/dx...

If `y= 2x^6 + sin 3x` then `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = 2x^6 + \sin(3x) \), we will differentiate each term separately using the rules of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = 2x^6 + \sin(3x) \). 2. **Differentiate the first term \( 2x^6 \)**: - We use the power rule of differentiation: \[ \frac{d}{dx}(x^n) = n \cdot x^{n-1} \] - Here, \( n = 6 \), so: \[ \frac{d}{dx}(2x^6) = 2 \cdot 6 \cdot x^{6-1} = 12x^5 \] 3. **Differentiate the second term \( \sin(3x) \)**: - We use the chain rule for differentiation: \[ \frac{d}{dx}(\sin(mx)) = m \cdot \cos(mx) \] - Here, \( m = 3 \), so: \[ \frac{d}{dx}(\sin(3x)) = 3 \cdot \cos(3x) \] 4. **Combine the derivatives**: - Now, we combine the results from the differentiation of both terms: \[ \frac{dy}{dx} = 12x^5 + 3\cos(3x) \] 5. **Final answer**: \[ \frac{dy}{dx} = 12x^5 + 3\cos(3x) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 4|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=sin^3x , then dy/dx=

If y = sin x l n(3x) then (dy)/(dx) will be :

If y=x^(sin x), then find (dy)/(dx)

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If y=5^(sin^(3)x+3) then (dy)/(dx)=

If y=x^(y)+(sin x)^(x) find dy/dx

If y=sin^2(x^3) , then dy/dx=

If y=sin^2(x^3) , then dy/dx=

If cos (x+y)=y sin x then find dx/dy

If x+y=sin(x+y) then (dy)/(dx)=