Home
Class 12
MATHS
{:(f(x) = cos x and H(1)(x) = min{f(t), ...

`{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):}`
Which of the following is true for `H_(3) (x)`?

A

Continuous and derivable in `[0, pi]`

B

Continuous but not derivable at `x = (pi)/(2)`

C

Neither continuous nor derivable at `x = (pi)/(2)`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the function \( H_3(x) \) defined as \( H_3(x) = \min \{ g(t), 0 \leq t \leq x \} \) where \( g(x) = \sin x \), we will analyze the function step-by-step. ### Step 1: Define the function \( g(x) \) Given: \[ g(x) = \sin x \] ### Step 2: Determine the intervals for \( H_3(x) \) We need to analyze \( H_3(x) \) for the intervals \( 0 \leq x \leq \frac{\pi}{2} \) and \( \frac{\pi}{2} < x \leq \pi \). 1. **For \( 0 \leq x \leq \frac{\pi}{2} \)**: \[ H_3(x) = \min \{ g(t) \mid 0 \leq t \leq x \} = \min \{ \sin t \mid 0 \leq t \leq x \} \] Since \( \sin t \) is increasing in this interval, the minimum occurs at \( t = 0 \): \[ H_3(x) = \sin(0) = 0 \] 2. **For \( \frac{\pi}{2} < x \leq \pi \)**: \[ H_3(x) = \min \{ g(t) \mid 0 \leq t \leq x \} = \min \{ \sin t \mid 0 \leq t \leq \frac{\pi}{2} \text{ and } \frac{\pi}{2} < t \leq x \} \] In the interval \( 0 \leq t \leq \frac{\pi}{2} \), the minimum is still \( 0 \) (at \( t = 0 \)). For \( \frac{\pi}{2} < t \leq x \), \( \sin t \) decreases from \( 1 \) to \( 0 \). Thus, the minimum will still be \( 0 \): \[ H_3(x) = 0 \] ### Step 3: Conclusion about continuity Since \( H_3(x) = 0 \) for both intervals \( 0 \leq x \leq \frac{\pi}{2} \) and \( \frac{\pi}{2} < x \leq \pi \), we can conclude that: - \( H_3(x) \) is continuous at all points in the interval \( [0, \pi] \). ### Final Answer Thus, \( H_3(x) \) is continuous for \( 0 \leq x \leq \pi \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 5|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 4|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} then which of the following is true for f(x)?

If 0 le x le pi/2 then

Let f(x) = sin x and " g(x)" = {{:(max {f(t)","0 le x le pi},"for", 0 le x le pi),((1-cos x)/(2)",","for",x gt pi):} Then, g(x) is

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

If f(x)= sin (arctan x), g(x) = tan (arcsin x), and 0 le x lt (pi)/(2) , then f(g((pi)/(10)))=

If 0 le x le (pi)/(2) and sin^(2)x=a and cos^(2)x=b , then sin 2x+cos 2x=

Let f (x) =cos x, g (x)={{:(min {f (t):0 le t le x}",", x in[0","pi]),((sin x)-1"," , x gtpi):} Then