Home
Class 12
MATHS
Let f(x) be a real valued function not i...

Let f(x) be a real valued function not identically zero, which satisfied the following conditions
I. `f(x + y^(2n + 1)) = f(x) + (f(y))^(2n+1), n in N, x, y` are any real numbers.
II. `f'(0) ge 0`
The value of f'(10), is

A

10

B

0

C

2n + 1

D

1

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 5|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 4|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a real valued function not identically zero, which satisfied the following conditions I. f(x + y^(2n + 1)) = f(x) + (f(y))^(2n+1), n in N, x, y are any real numbers. II. f'(0) ge 0 The value of f(x), is

Let f(x) be a real valued function not identically zero, which satisfied the following conditions I. f(x + y^(2n + 1)) = f(x) + (f(y))^(2n+1), n in N, x, y are any real numbers. II. f'(0) ge 0 The value of f(1), is

Let f(x) be real valued differentiable function not identically zero such that f(x+y^(2n+1)=f(x)+{f(y)}^(2n+1),nin Nandx,y are any real numbers and f'(0)le0. Find the values of f(5) andf'(10)

Let f(x) be a real function not identically zero in Z, such that for all x,y in R f(x+y^(2n+1))=f(x)={f(y)^(2n+1)}, n in Z If f'(0) ge 0 , then f'(6) is equal to

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is