Home
Class 12
MATHS
If f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(...

If `f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2))sin^(-1)(1-{x}))/(sqrt(2) ({x} - {x}^(3)))",",x gt 0),(k",",x = 0),((A sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))",",x lt 0):}` is continuous at x = 0, then the value of `sin^(2) k + cos^(2) ((Api)/(sqrt(2)))`, is..... (where {.} denotes fractional part of x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). This means that the right-hand limit (RHL) as \( x \) approaches 0 from the positive side must equal the left-hand limit (LHL) as \( x \) approaches 0 from the negative side, and both must equal \( f(0) \). ### Step 1: Calculate the Right-Hand Limit (RHL) The right-hand limit as \( x \) approaches 0 is given by: \[ \text{RHL} = \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \frac{\frac{\pi}{2} - \sin^{-1}(1 - \{h\}^2) \sin^{-1}(1 - \{h\})}{\sqrt{2} (h - h^3)} \] Since \( \{h\} = h \) for \( h > 0 \), we can simplify this to: \[ \text{RHL} = \lim_{h \to 0} \frac{\frac{\pi}{2} - \sin^{-1}(1 - h^2) \sin^{-1}(1 - h)}{\sqrt{2} (h - h^3)} \] ### Step 2: Evaluate the Limit As \( h \to 0 \): - \( \sin^{-1}(1 - h^2) \) approaches \( \frac{\pi}{2} \) - \( \sin^{-1}(1 - h) \) approaches \( \frac{\pi}{2} \) Thus, we can rewrite the limit: \[ \text{RHL} = \lim_{h \to 0} \frac{\frac{\pi}{2} - \frac{\pi}{2} \cdot \frac{\pi}{2}}{\sqrt{2} (h - h^3)} \] This simplifies to: \[ \text{RHL} = \lim_{h \to 0} \frac{\frac{\pi}{2} - \frac{\pi^2}{4}}{\sqrt{2} h(1 - h^2)} \] ### Step 3: Calculate the Left-Hand Limit (LHL) The left-hand limit as \( x \) approaches 0 is given by: \[ \text{LHL} = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{A \sin^{-1}(1 - \{-h\}) \cos^{-1}(1 - \{-h\})}{\sqrt{2} \{-h\} (1 - \{-h\})} \] Since \( \{-h\} = 1 - h \) for \( h > 0 \): \[ \text{LHL} = \lim_{h \to 0} \frac{A \sin^{-1}(h) \cos^{-1}(h)}{\sqrt{2} (1 - h) h} \] As \( h \to 0 \): - \( \sin^{-1}(h) \) approaches \( h \) - \( \cos^{-1}(h) \) approaches \( \frac{\pi}{2} \) Thus, we can rewrite the limit: \[ \text{LHL} = \lim_{h \to 0} \frac{A h \cdot \frac{\pi}{2}}{\sqrt{2} (1 - h) h} = \frac{A \cdot \frac{\pi}{2}}{\sqrt{2}} \] ### Step 4: Set RHL Equal to LHL For continuity at \( x = 0 \): \[ \text{RHL} = \text{LHL} \] This gives us: \[ \frac{\frac{\pi}{2} - \frac{\pi^2}{4}}{\sqrt{2}} = \frac{A \cdot \frac{\pi}{2}}{\sqrt{2}} \] From this, we can solve for \( A \): \[ A = 1 - \frac{\pi}{2} \] ### Step 5: Find \( k \) Since \( f(0) = k \) and we found that \( k = \frac{\pi}{2} \). ### Step 6: Calculate \( \sin^2 k + \cos^2 \left(\frac{A \pi}{\sqrt{2}}\right) \) Now we need to calculate \( \sin^2 k + \cos^2 \left(\frac{A \pi}{\sqrt{2}}\right) \): 1. \( \sin^2 k = \sin^2 \left(\frac{\pi}{2}\right) = 1 \) 2. \( A = 1 - \frac{\pi}{2} \) Thus: \[ \cos^2 \left(\frac{(1 - \frac{\pi}{2}) \pi}{\sqrt{2}}\right) = \cos^2 \left(\frac{\pi^2}{2\sqrt{2}} - \frac{\pi^2}{4\sqrt{2}}\right) = \cos^2 \left(\frac{\pi^2}{4\sqrt{2}}\right) \] ### Final Calculation Putting it all together: \[ \sin^2 k + \cos^2 \left(\frac{A \pi}{\sqrt{2}}\right) = 1 + 0 = 1 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 6|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x) is continuous at x= 0 or not ?