Home
Class 12
MATHS
The function f(x) = [x] cos((2x-1)/2) p...

The function `f(x) = [x] cos((2x-1)/2) pi` where [ ] denotes the greatest integer function, is discontinuous

A

continuous for every real x

B

discontinuous only at x = 0

C

discontinuous only at non-zero integral values of x

D

continuous only at x = 0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the points of discontinuity of the function \( f(x) = [x] \cos\left(\frac{2x-1}{2} \pi\right) \), where \([x]\) denotes the greatest integer function, we will analyze the behavior of the function around integer values. ### Step 1: Understanding the Function The function consists of two parts: 1. The greatest integer function \([x]\), which is discontinuous at integer values. 2. The cosine function \(\cos\left(\frac{2x-1}{2} \pi\right)\), which is continuous everywhere. ### Step 2: Identify Points of Discontinuity Since \([x]\) is discontinuous at integers, we need to check the continuity of \(f(x)\) at integer points. ### Step 3: Check Continuity at Integer Points Let's check the continuity at \(x = n\) (where \(n\) is an integer). #### Left-Hand Limit (LHL) at \(x = n\): \[ f(n^-) = \lim_{h \to 0} f(n - h) = [n - h] \cos\left(\frac{2(n - h) - 1}{2} \pi\right) \] For \(h\) approaching \(0\) from the right, \([n - h] = n - 1\) (since \(n - h\) is still less than \(n\)): \[ f(n^-) = (n - 1) \cos\left(\frac{2(n - h) - 1}{2} \pi\right) \] As \(h \to 0\), \(\cos\left(\frac{2(n - h) - 1}{2} \pi\right) \to \cos\left(\frac{2n - 1}{2} \pi\right)\). #### Right-Hand Limit (RHL) at \(x = n\): \[ f(n^+) = \lim_{h \to 0} f(n + h) = [n + h] \cos\left(\frac{2(n + h) - 1}{2} \pi\right) \] For \(h\) approaching \(0\) from the left, \([n + h] = n\): \[ f(n^+) = n \cos\left(\frac{2(n + h) - 1}{2} \pi\right) \] As \(h \to 0\), \(\cos\left(\frac{2(n + h) - 1}{2} \pi\right) \to \cos\left(\frac{2n - 1}{2} \pi\right)\). ### Step 4: Value of the Function at Integer Points \[ f(n) = [n] \cos\left(\frac{2n - 1}{2} \pi\right) = n \cos\left(\frac{2n - 1}{2} \pi\right) \] ### Step 5: Compare Limits and Function Value Now we compare: - \(f(n^-) = (n - 1) \cos\left(\frac{2n - 1}{2} \pi\right)\) - \(f(n^+) = n \cos\left(\frac{2n - 1}{2} \pi\right)\) - \(f(n) = n \cos\left(\frac{2n - 1}{2} \pi\right)\) Since \(f(n^-) \neq f(n)\) and \(f(n^+) \neq f(n)\) at integer points, the function is discontinuous at each integer \(n\). ### Conclusion The function \(f(x)\) is discontinuous at all integer values of \(x\).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise EXERCISE 7|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

ARIHANT MATHS ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Exercise (Questions Asked In Previous 13 Years Exam)
  1. about to only mathematics

    Text Solution

    |

  2. Let f: R to R and g:R to R be respectively given by f(x) =|x|+1 and g...

    Text Solution

    |

  3. Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

    Text Solution

    |

  4. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  5. Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

    Text Solution

    |

  6. if f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)),(- cos x, -(pi)/(2)lt x ,le 0...

    Text Solution

    |

  7. For the function f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  8. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  9. Let fandg be real valued functions defined on interval (-1,1) such tha...

    Text Solution

    |

  10. In the following, [x] denotes the greatest integer less than or equal ...

    Text Solution

    |

  11. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  12. Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/a...

    Text Solution

    |

  13. lf is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I, th...

    Text Solution

    |

  14. The domain of the derivative of the function f(x)={{:(tan^(-1)x ,if|x|...

    Text Solution

    |

  15. The left hand derivative of f(x)=[x]sin(pix) at x = k, k in Z, is

    Text Solution

    |

  16. Which of the following functions is differentiable at x = 0?

    Text Solution

    |

  17. For x in R, f(x) =|log(e) 2-sinx| and g(x) = f(f(x)) , then

    Text Solution

    |

  18. If the function g(X) ={{:( ksqrt ( x+1), 0 le x le 3),( mx+2, 3 lt x...

    Text Solution

    |

  19. If f and g are differentiable functions in [0, 1] satisfying f(0)""=""...

    Text Solution

    |

  20. The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greate...

    Text Solution

    |