Home
Class 12
MATHS
Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2...

Find domain `f(x)=sqrt((2x+1)/(x^3-3x^2+2x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{2x + 1}{x^3 - 3x^2 + 2x}} \), we need to ensure that the expression inside the square root is non-negative, and the denominator is not zero. ### Step-by-step Solution: 1. **Set the condition for the square root:** \[ \frac{2x + 1}{x^3 - 3x^2 + 2x} \geq 0 \] 2. **Factor the denominator:** First, we factor the denominator \( x^3 - 3x^2 + 2x \): \[ x^3 - 3x^2 + 2x = x(x^2 - 3x + 2) \] Now, we can factor \( x^2 - 3x + 2 \): \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] Thus, the denominator can be written as: \[ x^3 - 3x^2 + 2x = x(x - 1)(x - 2) \] 3. **Rewrite the inequality:** Now we rewrite the inequality: \[ \frac{2x + 1}{x(x - 1)(x - 2)} \geq 0 \] 4. **Find the critical points:** The critical points are found by setting the numerator and denominator to zero: - Numerator: \( 2x + 1 = 0 \) gives \( x = -\frac{1}{2} \) - Denominator: \( x(x - 1)(x - 2) = 0 \) gives \( x = 0, 1, 2 \) Thus, the critical points are \( x = -\frac{1}{2}, 0, 1, 2 \). 5. **Test intervals around the critical points:** We will test the sign of the expression in the intervals defined by the critical points: - Interval \( (-\infty, -\frac{1}{2}) \) - Interval \( (-\frac{1}{2}, 0) \) - Interval \( (0, 1) \) - Interval \( (1, 2) \) - Interval \( (2, \infty) \) We can choose test points from each interval: - For \( x = -1 \) in \( (-\infty, -\frac{1}{2}) \): \[ \frac{2(-1) + 1}{(-1)(-1 - 1)(-1 - 2)} = \frac{-2 + 1}{-1 \cdot -2 \cdot -3} = \frac{-1}{6} < 0 \] - For \( x = -\frac{1}{4} \) in \( (-\frac{1}{2}, 0) \): \[ \frac{2(-\frac{1}{4}) + 1}{(-\frac{1}{4})(-\frac{1}{4} - 1)(-\frac{1}{4} - 2)} = \frac{-\frac{1}{2} + 1}{(-\frac{1}{4})(-\frac{5}{4})(-\frac{9}{4})} = \frac{\frac{1}{2}}{\frac{45}{64}} > 0 \] - For \( x = \frac{1}{2} \) in \( (0, 1) \): \[ \frac{2(\frac{1}{2}) + 1}{(\frac{1}{2})(\frac{1}{2} - 1)(\frac{1}{2} - 2)} = \frac{1 + 1}{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})} > 0 \] - For \( x = 1.5 \) in \( (1, 2) \): \[ \frac{2(1.5) + 1}{(1.5)(1.5 - 1)(1.5 - 2)} = \frac{3 + 1}{(1.5)(0.5)(-0.5)} < 0 \] - For \( x = 3 \) in \( (2, \infty) \): \[ \frac{2(3) + 1}{(3)(3 - 1)(3 - 2)} = \frac{6 + 1}{3 \cdot 2 \cdot 1} > 0 \] 6. **Combine the results:** The intervals where the expression is non-negative are: - \( (-\frac{1}{2}, 0) \) - \( (0, 1) \) - \( (2, \infty) \) 7. **Include critical points:** We must also check the critical points: - At \( x = -\frac{1}{2} \), \( f(x) = 0 \) (included) - At \( x = 0 \), the function is undefined (not included) - At \( x = 1 \), the function is undefined (not included) - At \( x = 2 \), the function is undefined (not included) ### Final Domain: Thus, the domain of the function \( f(x) \) is: \[ \boxed{[-\frac{1}{2}, 0) \cup (0, 1) \cup (2, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sqrt((1-|x|)/(|x|-2))

Domain of f(x)=1/sqrt(x^3-3x^2+2x) is

Find the domain? f(x)=sqrt((x^2+4x)C_(2x^2+3))

Find the domain of f(x)=sqrt((0. 625)^(4-3x)-(1. 6)^(x(x+8)))

Find the domain of f(x)=sqrt((0. 625)^(4-3x)-(1. 6)^(x(x+8)))

Find the domain of f(x) = sqrt(x^(2) - 25x + 144)

Find the domain of f(x) = (x^(2)-9)/(x-3)

Find the domain f(x)=(log_(2x)3)/(cos^(- 1)(2x-1)

Find the domain of f(x)=sqrt(sinx)+sqrt(16-x^2)

Find the domain f(x)=sqrt((log_(0.3)|x-2|)/(|x|)) .