Home
Class 12
MATHS
The domain of the function f(x)=""^(16-x...

The domain of the function `f(x)=""^(16-x)C_(2x-1+^(20-3x)P_(4x-5)`, where the symbols have their usual meanings, is the set

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \binom{16-x}{2x-1} + P(20-3x, 4x-5) \), we need to analyze the conditions under which the binomial coefficient and the permutation are defined. ### Step 1: Analyze the Binomial Coefficient The binomial coefficient \( \binom{n}{r} \) is defined when: 1. \( n \) is a natural number (non-negative integer). 2. \( r \) is a whole number (non-negative integer). 3. \( n \geq r \). For our function, we have: - \( n = 16 - x \) - \( r = 2x - 1 \) **Condition 1: \( 16 - x \geq 0 \)** \[ 16 - x \geq 0 \implies x \leq 16 \] **Condition 2: \( 2x - 1 \geq 0 \)** \[ 2x - 1 \geq 0 \implies 2x \geq 1 \implies x \geq \frac{1}{2} \] ### Step 2: Analyze the Permutation The permutation \( P(n, r) \) is defined when: 1. \( n \) is a natural number (non-negative integer). 2. \( r \) is a whole number (non-negative integer). 3. \( n \geq r \). For our function, we have: - \( n = 20 - 3x \) - \( r = 4x - 5 \) **Condition 3: \( 20 - 3x \geq 0 \)** \[ 20 - 3x \geq 0 \implies 3x \leq 20 \implies x \leq \frac{20}{3} \approx 6.67 \] **Condition 4: \( 4x - 5 \geq 0 \)** \[ 4x - 5 \geq 0 \implies 4x \geq 5 \implies x \geq \frac{5}{4} = 1.25 \] ### Step 3: Combine Conditions Now we combine all the conditions derived: 1. \( x \leq 16 \) 2. \( x \geq \frac{1}{2} \) 3. \( x \leq \frac{20}{3} \) 4. \( x \geq \frac{5}{4} \) From conditions 2 and 4, we have: \[ x \geq \frac{5}{4} \] From conditions 1 and 3, we have: \[ x \leq \frac{20}{3} \] ### Step 4: Determine the Domain The combined inequalities give us: \[ \frac{5}{4} \leq x \leq \frac{20}{3} \] ### Step 5: Identify Integer Values Since \( x \) must be a natural number, we find the integer values within this range: - The smallest integer \( \geq \frac{5}{4} \) is 2. - The largest integer \( \leq \frac{20}{3} \) is 6. Thus, the possible integer values for \( x \) are: \[ x = 2, 3, 4, 5, 6 \] ### Final Domain The domain of the function \( f(x) \) is: \[ \{2, 3, 4, 5, 6\} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=sin^(-1)(2x-3)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the domain of the function f(x)=sin^(-1)(2x-3) .

The domain of the function f(x)=1/(9-x^2)+log_(20)(x^3-3x) is

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)

Domain of the function f(x) =log_(0.5) (3x-x^(2)-2)

Find the domain of the function f(x) = (x^(2))/(4-x^(2))

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(2)-x) is