Home
Class 12
MATHS
Determine whether the following function...

Determine whether the following functions are even or odd.
`{:((i)f(x)=log(x+sqrt(1+x^(2))),(ii)f(x)=x((a^(x)+1)/(a^(x)-1))),((iii)f(x)=sinx+cosx,(iv)f(x)=x^(2)-abs(x)),((v)f(x)=log((1-x)/(1+x)),(vi)f(x)={(sgn x)^(sgnx)}^(n)," n is an odd integer"):}`
`{:((vii) f(x)=sgn(x)+x^(2),""),((viii)f(x+y)+f(x-y)=2f(x)*f(y)," where " f(0) ne 0 and x","y ne R.,""):}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given functions are even, odd, or neither, we will apply the definitions of even and odd functions: 1. A function \( f(x) \) is **even** if \( f(-x) = f(x) \). 2. A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \). Let's analyze each function step by step: ### (i) \( f(x) = \log(x + \sqrt{1 + x^2}) \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = \log(-x + \sqrt{1 + (-x)^2}) = \log(-x + \sqrt{1 + x^2}) \] **Step 2:** Simplify \( f(-x) \): Using the property of logarithms: \[ f(-x) = \log\left(\frac{1}{x + \sqrt{1 + x^2}}\right) = -\log(x + \sqrt{1 + x^2}) = -f(x) \] **Conclusion:** Since \( f(-x) = -f(x) \), the function is **odd**. ### (ii) \( f(x) = x \cdot \frac{a^x + 1}{a^x - 1} \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = -x \cdot \frac{a^{-x} + 1}{a^{-x} - 1} = -x \cdot \frac{\frac{1}{a^x} + 1}{\frac{1}{a^x} - 1} = -x \cdot \frac{1 + a^x}{1 - a^x} \] **Step 2:** Simplify \( f(-x) \): \[ f(-x) = -x \cdot \frac{1 + a^x}{1 - a^x} = -f(x) \] **Conclusion:** Since \( f(-x) = -f(x) \), the function is **odd**. ### (iii) \( f(x) = \sin x + \cos x \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = \sin(-x) + \cos(-x) = -\sin x + \cos x \] **Conclusion:** Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), the function is **neither even nor odd**. ### (iv) \( f(x) = x^2 - |x| \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = (-x)^2 - |-x| = x^2 - |x| = f(x) \] **Conclusion:** Since \( f(-x) = f(x) \), the function is **even**. ### (v) \( f(x) = \log\left(\frac{1-x}{1+x}\right) \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = \log\left(\frac{1+x}{1-x}\right) \] **Step 2:** Simplify \( f(-x) \): \[ f(-x) = -\log\left(\frac{1-x}{1+x}\right) = -f(x) \] **Conclusion:** Since \( f(-x) = -f(x) \), the function is **odd**. ### (vi) \( f(x) = (\text{sgn } x)^{\text{sgn } x}^n \) where \( n \) is an odd integer **Step 1:** Calculate \( f(-x) \): \[ f(-x) = (\text{sgn } (-x))^{\text{sgn } (-x)}^n = (-\text{sgn } x)^n \] **Step 2:** Since \( n \) is odd: \[ f(-x) = -(\text{sgn } x)^{\text{sgn } x}^n = -f(x) \] **Conclusion:** Since \( f(-x) = -f(x) \), the function is **odd**. ### (vii) \( f(x) = \text{sgn}(x) + x^2 \) **Step 1:** Calculate \( f(-x) \): \[ f(-x) = \text{sgn}(-x) + (-x)^2 = -\text{sgn}(x) + x^2 \] **Conclusion:** Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), the function is **neither even nor odd**. ### (viii) \( f(x+y) + f(x-y) = 2f(x)f(y) \) **Step 1:** Substitute \( -x \): \[ f(-x+y) + f(-x-y) = 2f(-x)f(y) \] **Step 2:** Since the equation remains unchanged: \[ f(-x+y) + f(-x-y) = 2f(-x)f(y) \] **Conclusion:** The function is **even**. ### Summary of Results: 1. (i) Odd 2. (ii) Odd 3. (iii) Neither 4. (iv) Even 5. (v) Odd 6. (vi) Odd 7. (vii) Neither 8. (viii) Even
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|8 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Sketch the graph of {:((i) f(x)=sgn(x^(2)+1),(ii) f(x)=sgn(log_(e)x)),((iii) f(x)=sgn(sin x), (iv) f(x)=sgn(cos x)):}

Which of the following function is (are) even, odd, or neither? (a). f(x)=x^2sinx (b). f(x)=log((1-x)/(1+x)) (c). f(x)=log(x+sqrt(1+x^2)) (d). f(x)=(e^x+e^(-x))/2

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

Discuss continuity of (i) f(x) = sgn(x^(3)-x) (ii) f(x) = sgn(2 cos x-1) (iii) f(x) = sgn(x^(2)-2x+3)

For which of the following functions f(0) exists such that f(x) is continuous at f(x)=1/((log)_e|x|) b. f(x)=1/((log)_"e"|x|) c. f(x)=x sinpi/x d. f(x)=1/(1+2^(cot x))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))