Home
Class 12
MATHS
Determine whether function, f(x)=(-1)^([...

Determine whether function, `f(x)=(-1)^([x])` is even, odd or neither of two (where `[*]` denotes the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = (-1)^{[x]} \) (where \([x]\) denotes the greatest integer function) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Definitions A function \( f(x) \) is: - **Even** if \( f(x) = f(-x) \) for all \( x \). - **Odd** if \( f(x) = -f(-x) \) for all \( x \). - **Neither** if it does not satisfy either condition. ### Step 2: Evaluate \( f(x) \) and \( f(-x) \) We need to evaluate \( f(x) \) and \( f(-x) \) for various values of \( x \). 1. **For \( x = 0 \)**: - \( f(0) = (-1)^{[0]} = (-1)^0 = 1 \) - \( f(-0) = f(0) = 1 \) 2. **For \( x = 0.5 \)**: - \( f(0.5) = (-1)^{[0.5]} = (-1)^0 = 1 \) - \( f(-0.5) = (-1)^{[-0.5]} = (-1)^{-1} = -1 \) 3. **For \( x = 1 \)**: - \( f(1) = (-1)^{[1]} = (-1)^1 = -1 \) - \( f(-1) = (-1)^{[-1]} = (-1)^{-1} = -1 \) 4. **For \( x = 1.5 \)**: - \( f(1.5) = (-1)^{[1.5]} = (-1)^1 = -1 \) - \( f(-1.5) = (-1)^{[-1.5]} = (-1)^{-2} = 1 \) 5. **For \( x = 2 \)**: - \( f(2) = (-1)^{[2]} = (-1)^2 = 1 \) - \( f(-2) = (-1)^{[-2]} = (-1)^{-2} = 1 \) ### Step 3: Compare \( f(x) \) and \( f(-x) \) Now we compare the values we calculated: - For \( x = 0 \): \( f(0) = f(-0) \) (even) - For \( x = 0.5 \): \( f(0.5) \neq f(-0.5) \) and \( f(0.5) \neq -f(-0.5) \) (neither) - For \( x = 1 \): \( f(1) = f(-1) \) (even) - For \( x = 1.5 \): \( f(1.5) \neq f(-1.5) \) and \( f(1.5) \neq -f(-1.5) \) (neither) - For \( x = 2 \): \( f(2) = f(-2) \) (even) ### Step 4: Conclusion Since the function does not consistently satisfy the conditions for being even or odd across all values of \( x \), we conclude that the function \( f(x) = (-1)^{[x]} \) is **neither even nor odd**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|8 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=((1+2^(x))^(7))/(2^(x))

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=(sec x+x^(2)-9)/(x sin x)

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

Plot the following, where [.] denotes greatest integer function. f(x)=[cos^(-1)x]