Home
Class 12
MATHS
f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-co...

`f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the functions \( f(x) = \cot^2 x \cdot \cos^2 x \) and \( g(x) = \cot^2 x - \cos^2 x \) are identical, we will follow the steps outlined in the video transcript: ### Step 1: Determine the Domain of \( f(x) \) 1. **Identify the components of \( f(x) \)**: - \( f(x) = \cot^2 x \cdot \cos^2 x \) - The function \( \cot^2 x \) is defined for all \( x \) except where \( \cos x = 0 \), which occurs at \( x = n\pi + \frac{\pi}{2} \) for \( n \in \mathbb{Z} \). - The function \( \cos^2 x \) is defined for all \( x \). 2. **Find the domain**: - The domain of \( f(x) \) is the intersection of the domains of \( \cot^2 x \) and \( \cos^2 x \). - Thus, the domain of \( f(x) \) is all real numbers except \( x = n\pi + \frac{\pi}{2} \). ### Step 2: Determine the Domain of \( g(x) \) 1. **Identify the components of \( g(x) \)**: - \( g(x) = \cot^2 x - \cos^2 x \) - Again, \( \cot^2 x \) is defined for all \( x \) except where \( \cos x = 0 \), and \( \cos^2 x \) is defined for all \( x \). 2. **Find the domain**: - The domain of \( g(x) \) is also the intersection of the domains of \( \cot^2 x \) and \( \cos^2 x \). - Thus, the domain of \( g(x) \) is all real numbers except \( x = n\pi + \frac{\pi}{2} \). ### Step 3: Compare the Domains - Since both \( f(x) \) and \( g(x) \) have the same domain, we can proceed to the next step. ### Step 4: Simplify \( g(x) \) 1. **Rewrite \( g(x) \)**: - Start with \( g(x) = \cot^2 x - \cos^2 x \). - Recall that \( \cot x = \frac{\cos x}{\sin x} \), so \( \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \). 2. **Substitute and simplify**: - \( g(x) = \frac{\cos^2 x}{\sin^2 x} - \cos^2 x \) - Factor out \( \cos^2 x \): \[ g(x) = \cos^2 x \left( \frac{1}{\sin^2 x} - 1 \right) \] - Simplifying further: \[ g(x) = \cos^2 x \left( \frac{1 - \sin^2 x}{\sin^2 x} \right) \] - Since \( 1 - \sin^2 x = \cos^2 x \): \[ g(x) = \cos^2 x \cdot \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \cdot \cos^2 x \] ### Step 5: Compare \( f(x) \) and \( g(x) \) - We find that: \[ g(x) = \cot^2 x \cdot \cos^2 x = f(x) \] - Therefore, \( f(x) = g(x) \) for all \( x \) in their common domain. ### Conclusion Since both functions have the same domain and \( f(x) = g(x) \) for all \( x \) in that domain, we conclude that the functions \( f(x) \) and \( g(x) \) are identical. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?