Home
Class 12
MATHS
f(x)=sgn(cot^(- 1)x),g(x)=sgn(x^2-4x+5)...

`f(x)=sgn(cot^(- 1)x),g(x)=sgn(x^2-4x+5)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the functions \( f(x) = \text{sgn}(\cot^{-1} x) \) and \( g(x) = \text{sgn}(x^2 - 4x + 5) \) are identical, we need to check three conditions: their domains, ranges, and whether they yield the same output for every \( x \) in their common domain. ### Step 1: Determine the Domain of \( f(x) \) The function \( f(x) = \text{sgn}(\cot^{-1} x) \): - The cotangent inverse function, \( \cot^{-1} x \), is defined for all real numbers \( x \). - The output of \( \cot^{-1} x \) lies in the interval \( (0, \pi) \) for all \( x \in \mathbb{R} \). **Domain of \( f(x) \):** \( \mathbb{R} \) ### Step 2: Determine the Range of \( f(x) \) The signum function \( \text{sgn}(y) \) is defined as: - \( 1 \) if \( y > 0 \) - \( 0 \) if \( y = 0 \) - \( -1 \) if \( y < 0 \) Since \( \cot^{-1} x \) is always positive for all \( x \in \mathbb{R} \): - Therefore, \( f(x) = \text{sgn}(\cot^{-1} x) = 1 \) for all \( x \in \mathbb{R} \). **Range of \( f(x) \):** \( \{1\} \) ### Step 3: Determine the Domain of \( g(x) \) The function \( g(x) = \text{sgn}(x^2 - 4x + 5) \): - First, we analyze the quadratic expression \( x^2 - 4x + 5 \). - The discriminant \( D \) of the quadratic is calculated as: \[ D = b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 5 = 16 - 20 = -4 \] - Since the discriminant is less than zero, the quadratic has no real roots and opens upwards (as the coefficient of \( x^2 \) is positive). **Domain of \( g(x) \):** \( \mathbb{R} \) ### Step 4: Determine the Range of \( g(x) \) Since \( x^2 - 4x + 5 \) is always positive (it has no real roots and opens upwards): - Therefore, \( g(x) = \text{sgn}(x^2 - 4x + 5) = 1 \) for all \( x \in \mathbb{R} \). **Range of \( g(x) \):** \( \{1\} \) ### Step 5: Compare Outputs for Common Domain Since both functions have the same domain \( \mathbb{R} \) and both yield the same output: - \( f(x) = 1 \) for all \( x \) - \( g(x) = 1 \) for all \( x \) ### Conclusion Since the domains are the same, the ranges are the same, and \( f(x) = g(x) \) for all \( x \) in their common domain, we conclude that: **Final Result:** \( f(x) \) and \( g(x) \) are identical functions. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Discuss continuity of (i) f(x) = sgn(x^(3)-x) (ii) f(x) = sgn(2 cos x-1) (iii) f(x) = sgn(x^(2)-2x+3)

Find the range of the following (i) f(x)="sgn"(x^(2)) " (ii) "f(x)="sgn"(x^(2)-2x+3)

f(x)=e^(lncot), g(x)=cot^(- 1)x

Sketch the graph of {:((i) f(x)=sgn(x^(2)+1),(ii) f(x)=sgn(log_(e)x)),((iii) f(x)=sgn(sin x), (iv) f(x)=sgn(cos x)):}

f(x)=cot^(- 1)(x^2-4x+5) then range of f(x) is equal to :

Solve the following equations (i) sgn({[x]})=0 (ii) sgn(x^(2)-2x-8)=-1 (iii)sgn((x^(2)-5x+4)/({x}))=-1

If f(x)=x^3sgn(x), then

Lim_(x rarr 0^+) ((pi/2-cot^(-1){x})x)/("sgn"x-cosx) (where {.} and sgn(.) denotes fractional part function and signum function respectively) is equal to

If f(x)=cos^(-1)(sgn((2[x])/(3x-[x]))) , where sgn ( ) denotes the signum function and [.] dentoes the greatest integer functions, then which of the following is/are correct?