Home
Class 12
MATHS
f(x)=e^(lncot), g(x)=cot^(- 1)x...

`f(x)=e^(lncot), g(x)=cot^(- 1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the functions \( f(x) = e^{\ln(\cot^{-1}(x))} \) and \( g(x) = \cot^{-1}(x) \) are identical, we will follow these steps: ### Step 1: Understand the Functions We have: - \( f(x) = e^{\ln(\cot^{-1}(x))} \) - \( g(x) = \cot^{-1}(x) \) ### Step 2: Simplify \( f(x) \) Using the property of logarithms and exponentials, we know that \( e^{\ln(a)} = a \) for \( a > 0 \). Therefore, we can simplify \( f(x) \): \[ f(x) = e^{\ln(\cot^{-1}(x))} = \cot^{-1}(x) \quad \text{(since \( \cot^{-1}(x) > 0 \))} \] ### Step 3: Compare \( f(x) \) and \( g(x) \) Now we have: \[ f(x) = \cot^{-1}(x) \] \[ g(x) = \cot^{-1}(x) \] Since both functions are equal, we can conclude that: \[ f(x) = g(x) \] ### Step 4: Check Domains and Ranges - **Domain of \( g(x) = \cot^{-1}(x) \)**: The domain is \( (-\infty, \infty) \). - **Domain of \( f(x) = e^{\ln(\cot^{-1}(x))} \)**: The domain is also \( (-\infty, \infty) \) since \( \cot^{-1}(x) \) is defined for all real \( x \). - **Range of \( g(x) = \cot^{-1}(x) \)**: The range is \( (0, \pi) \). - **Range of \( f(x) = \cot^{-1}(x) \)**: The range is also \( (0, \pi) \). ### Conclusion Since both the domains and ranges are equal, and we have shown that \( f(x) = g(x) \), we conclude that the functions are identical: \[ \boxed{f(x) = g(x)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

f(x)=In" "e^(x), g(x)=e^(Inx) . Identical function or not?

Examine whether the folloiwng pair of function are identical or not: f(x)=cosec^(2)(x)-cot^(2)x and g(x)=1

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then