Home
Class 12
MATHS
Find the equivalent definition of f(x...

Find the equivalent definition of
`f(x)=max.{x^(2),(1-x)^(2),2x(1-x)} " where " 0 le x le 1`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)={{:((1-x)^(2)",", 0 le x le 1/3),(2x(1-x)",", 1/3 le x le 2/3),(x^(2)",", 2/3 le x le 1):}`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|72 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1

Find the equivalent definition of f(x)=m a xdot{x^2,(-x)^2,2x(1-x)}where 0lt=xlt=1

Consider the function f(x)={(x-[x]-1/2, if x!inI),(0, if x!inI):} where [.] denotes the greatest integer function and g(x)=max. {x^2, f(x), |x|}, -2 le x le 2 . Now answer the question:Area bounded by y=g(x) when -2 le x le 2 is (A) 175/48 (B) 275/48 (C) 175/24 (D) 275/24

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

Show that the function f(x) = {{:(2x+3",",-3 le x lt -2),(x+1",",-2 le x lt 0),(x+2",",0 le x le 1):} is discontinuous at x = 0 and continuous at every point in interval [-3, 1]

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}