Home
Class 12
MATHS
Let f:N rarr R be such that f(1)=1 and f...

Let `f:N rarr R` be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)f(n), for `n ge 2, " then " `/(2010f(2010))` is ……….. .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{2010 f(2010)} \) given the conditions of the function \( f \). ### Step 1: Understand the given conditions We know: 1. \( f(1) = 1 \) 2. The equation: \[ f(1) + 2f(2) + 3f(3) + \ldots + nf(n) = n(n+1)f(n) \quad \text{for } n \geq 2 \] ### Step 2: Substitute \( n = 2 \) Substituting \( n = 2 \) into the equation: \[ f(1) + 2f(2) = 2(2+1)f(2) \] This simplifies to: \[ 1 + 2f(2) = 6f(2) \] Rearranging gives: \[ 1 = 6f(2) - 2f(2) = 4f(2) \] Thus, we find: \[ f(2) = \frac{1}{4} \] ### Step 3: Substitute \( n = 3 \) Next, substitute \( n = 3 \): \[ f(1) + 2f(2) + 3f(3) = 3(3+1)f(3) \] This simplifies to: \[ 1 + 2 \cdot \frac{1}{4} + 3f(3) = 12f(3) \] Calculating \( 1 + \frac{1}{2} = \frac{3}{2} \), we have: \[ \frac{3}{2} + 3f(3) = 12f(3) \] Rearranging gives: \[ \frac{3}{2} = 12f(3) - 3f(3) = 9f(3) \] Thus, we find: \[ f(3) = \frac{1}{6} \] ### Step 4: Identify the pattern From the values we have calculated: - \( f(1) = 1 = \frac{1}{1} \) - \( f(2) = \frac{1}{4} = \frac{1}{2 \cdot 2} \) - \( f(3) = \frac{1}{6} = \frac{1}{2 \cdot 3} \) We can see a pattern forming: \[ f(n) = \frac{1}{2n} \quad \text{for } n \geq 1 \] ### Step 5: Calculate \( f(2010) \) Using the established pattern: \[ f(2010) = \frac{1}{2 \cdot 2010} = \frac{1}{4020} \] ### Step 6: Find \( 2010 f(2010) \) Now we calculate: \[ 2010 f(2010) = 2010 \cdot \frac{1}{4020} = \frac{2010}{4020} = \frac{1}{2} \] ### Step 7: Find \( \frac{1}{2010 f(2010)} \) Finally, we find: \[ \frac{1}{2010 f(2010)} = \frac{1}{\frac{1}{2}} = 2 \] ### Final Answer Thus, the value of \( \frac{1}{2010 f(2010)} \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 5: Matching Type Questions|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f : N rarr R be a function such that f(1) + 2f(2) + 3f(3) + ....+nf(n)= n(n+1) f(n) , for n ge 2 and f(1) = 1 then

Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and sum_(r=1)^(n)rf(r)=n(n+1)f(n), forall n ge 2 the value of 2126 f(1063) is ………….. .

Consider the function f defined on the set of all non-negative interger such that f(0) = 1, f(1) =0 and f(n) + f(n-1) = nf(n-1)+(n-1) f(n-2) for n ge 2 , then f(5) is equal to

Let f:NrarrN in such that f(n+1)gtf(f(n)) for all n in N then

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

Let f : N rarr N and given by f(x) = x + 6. Find f(1), f(3), f(7).

If a function F is such that F(0)=2 , F(1)=3 , F(n+2)=2F(n)-F(n+1) for n ge 0 , then F(5) is equal to

If f(x) = a(x^n +3), f(1) = 12, f(3) = 36 , then f(2) is equal to

A function f is defined such that f(1)=2, f(2)=5, and f(n)=f(n-1)-f(n-2) for all integer values of n greater than 2. What is the value of f(4)?

Let f : N rarr N be defined as f(x) = 2x for all x in N , then f is

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. about to only mathematics

    Text Solution

    |

  2. If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y i...

    Text Solution

    |

  3. Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)...

    Text Solution

    |

  4. If f(x)=(2010x+165)/(165x-2010), x gt 0 " and " x ne (2010)/(165), the...

    Text Solution

    |

  5. If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2...

    Text Solution

    |

  6. The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in R...

    Text Solution

    |

  7. If A={1,2,3}, B={1,3,5,7,9}, the ratio of number of one-one functions ...

    Text Solution

    |

  8. If n(A)=4, n(B)=5 and number of functions from A to B such that range ...

    Text Solution

    |

  9. If a and b are constants, such that f(x)=asinx+bxcosx+2x^(2) and f(2...

    Text Solution

    |

  10. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  11. If f(x)=x^(3)-12x+p,p in {1,2,3,…,15} and for each 'p', the number of ...

    Text Solution

    |

  12. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  13. If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

    Text Solution

    |

  14. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  15. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  16. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  17. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  18. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  19. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  20. Let f(x) be a function such that , f(x-1)+f(c+1)=sqrt(3)f(x), forall x...

    Text Solution

    |